University of Missouri School of Medicine MU Health School of Medicine
News Divider

Mark McDonald has Duchenne muscular dystrophy, the most common lethal genetic disease diagnosed in children. His father Robert McDonald, MD '88, finds hope in MU's gene therapy research, which has received a new $2.1 million grant from the National Institutes of Health.

Getting to the Heart of Muscular Dystrophy

Gene therapy researcher awarded NIH grant
to protect cardiac muscles from deadly disease

Children with Duchenne muscular dystrophy (DMD) face a future of rapidly weakening muscles, which usually leads to death by respiratory or cardiac failure before their 30th birthday. While researchers are hopeful that gene therapy could eventually evolve into an effective treatment, few have targeted the heart of the problem as much as Dongsheng Duan, PhD.

Duan hopes a new $2.1 million grant he received from the National Institutes of Health will help him develop a treatment that prevents heart muscles from weakening as a result of DMD. As many as 40 percent of patients with the inherited disorder die from heart failure because their weakened cardiac muscles can't pump enough blood to sustain life.

Children with DMD, which is often seen in boys, experience weakening of both skeletal muscle and heart muscle due to a defective gene for dystrophin, a type of muscle protein. Researchers have developed a synthetic dystrophin gene that has shown to be effective in treating skeletal muscle, but Duan's findings published in the journal Molecular Therapy show that cardiac muscle requires different treatment. In fact, tests in an animal model have shown that treating skeletal muscle alone while leaving cardiac muscle untreated can lead to serious complications: Stronger skeletal muscles mean patients can be more physically active, which requires a stronger heart to pump blood throughout the body.

"We've demonstrated that the gene therapy that works for the skeletal muscle doesn't necessarily work for the heart," Duan said. "If we want a more comprehensive treatment, we cannot ignore how the disease affects cardiac muscle."

Duan's lab has analyzed data on thousands of patients with DMD to identify common patterns in deletions on the dystrophin gene that could have led to heart-specific muscle weakness. Now the researcher is developing a new synthetic gene that he hopes will comprehensively treat muscles weakened by DMD.

"We're developing this gene based on what we already know about skeletal muscle, so it will not only be perfectly functional for skeletal muscle but also therapeutic for heart muscle," said Duan, a Margaret Proctor Mulligan Distinguished Professor in Medical Research in MU's Department of Molecular Microbiology and Immunology.

Duan plans to evaluate the newly developed gene in dystrophic mouse and dog models. With funding from additional NIH grants, Duan's team is developing viral vectors for carrying the most important parts of the therapeutic genes to diseased muscle cells. The therapy-carrying viruses will be injected directly into the blood system or the muscles. Following therapy, researchers will perform a series of tests to evaluate the strength of the heart muscle and the effect of the treatment.

"Researchers are more advanced in their understanding of Duchenne muscular dystrophy when it comes to skeletal muscle, but cardiac and skeletal muscle need to be simultaneously treated in patients," Duan said. "This is just the beginning of research on the heart muscle."

While still being tested in labs, Duan's proposed therapy gives hope to parents like Robert McDonald, MD, of Jefferson City, Mo. His son Mark was diagnosed with DMD when the boy was 2 years old. Dr. McDonald now serves on the board of directors and the therapeutics committee for Parent Project Muscular Dystrophy, the largest nonprofit organization focused on DMD. Parent Project has also awarded funds for Duan's research.

"He is one of the most valuable people trying to find a solution for DMD," McDonald said. "Parents like me are looking to scientists like him to someday help our children grow up to be men, and hopefully old men."

MU Health Magazine


News and Events

Kimchi Kimchi Named Medical Director of Cancer Center
Accomplished academic physician also leads Division of Surgical Oncology

Sherman New Predictor of Health Complications Can Identify High-Risk Preemies
Blood eosinophilia predicts deadly complications for preemies with necrotizing enterocolitis

Padilla A Short Walk Around the Office Can Reverse Vascular Dysfunction Caused by Hours at a Computer
Short walks after sitting can offset the harm caused to vascular blood vessels

Coulter MU Awards Five Grants to Accelerate Biomedical Discoveries from Lab to Market
Coulter program pairs physicians, engineers to develop new health technologies

Bill Folk (Un)common Folk
Biochemistry stalwart prepares to share his story for Corps of Discovery Lecture

Boerman Researchers Identify Mechanism that Impairs Blood Flow with Aging
New findings could lead to treatments for age-related vascular disease

Koopman Clinic Notes Should Be Re-Engineered to Meet Needs of Physicians
Better documentation tools can lead to more efficient, safer patient care

Altes named Radiology Chair Altes Named MU Radiology Chair
Altes excels in bench to bedside research, teaching and mentoring students, and clinical care

Protein Packed Breakfast Protein-Packed Breakfast Prevents Body Fat Gain in Overweight Teens
High-protein breakfast also improves teens’ glycemic control

White Coat Ceremony 2015 White Coat Ceremony Marks Start of Professional Journey for 104 Students
Students receive 'cloak of compassion' and pledge to uphold medicine's highest values

Eduardo Simoes, MD Tool Helps Public Health Agencies Prioritize Health Risks
Researcher works with Brazil to identify top risks for chronic diseases

Washington and Khosla U.S. South Asians More Reluctant to Seek Medication for Pain
Health care workers should be culturally aware when caring for patients, families

Segal Blood Vessels Can Actually Get Better With Age
Study finds that arteries adapt to oxidative stress caused by aging

Media Relations
University of Missouri Health System
One Hospital Drive, DC028.00
Columbia, MO 65212
24/7 on-call pager: (573) 876-0708

Mary Jenkins
(573) 882-7299

Jeff Hoelscher
(573) 884-1608

Derek Thompson
(573) 882-3323

Diamond Dixon
(573) 884-7541

Justin Kelley (Photographer)
(573) 882-5786
Pager (573) 397-9289

Web Communications
University of Missouri Health System
One Hospital Drive, MA204G, DC018.00
Columbia, MO 65212
(573) 884-0298

Laura Gerding, APR
(573) 882-9193

Velvet Hasner
(573) 884-1115

Justin Willett
(573) 884-7740

Printer Friendly
Follow us on Twitter!   Facebook   YouTube Videos   Instagram   Pinterest  
Website created and maintained by the Office of Communications. Contact the MU School of Medicine.
Revised: April 27, 2013 - Copyright © 2014 - Curators of the University of Missouri. All rights reserved. DMCA and other copyright information. An equal opportunity/access/affirmative action/pro-disabled and veteran employer.