University of Missouri School of Medicine MU Health School of Medicine
News Divider
Join us on Facebook!   Follow us on Twitter!   Subscribe to us!      


Peter Cornish, PhD
Biochemist Peter Cornish, PhD, stands in front of a total internal reflection (TIR) microscope used to visualize single molecules, such as ribosomes. In his lab, Cornish uses fluorescent dyes along with lasers in the microscope to examine the movements of ribosomes and other molecules. His study of ribosomes and their role in many biological functions and diseases, such as HIV, earned him the title of 2012 Pew Scholar in Biomedical Sciences.


Researcher Joins Elite Group
of National Pew Scholars


Disrupting protein "factories" could lead to treatments for HIV, cancer

Inside the body, the ribosome is known as the protein "factory." This large molecule creates proteins, which are responsible for many biological functions. When bacteria or a virus, such as HIV, invades the body, it disrupts the functions of the ribosome, eventually creating havoc with some biological functions. Now, a University of Missouri researcher has been nationally recognized for his work to stop this disruption and possibly create a treatment for HIV and other diseases, such as cancer.

Peter Cornish, PhD, an assistant professor of biochemistry in the MU School of Medicine, joins 21 other scientists in the United States in being named a 2012 Pew Scholar in Biomedical Sciences. The honor is given to the most promising, young investigators in the field and comes with a $240,000 prize. Through his research, Cornish is determining how to get the ribosome's process back on track, while simultaneously destroying or containing the virus or bacteria.

"The ribosome moves along a chain of messenger RNA molecules in a particular pattern, typically three molecules at a time, as it gathers information from the RNA and determines which proteins it should create," Cornish said. "Sometimes, when certain viruses enter the body, this movement is disrupted and 'frame-shifting' occurs. So instead of reading the RNA molecules three at a time, a frame-shifted ribosome might make a temporary shift by a single molecule. Now, it's still reading RNA molecules three at a time, but it's getting the information in a different order and creating different proteins that are required for viral replication and propagation."

Currently, Cornish is working on two potential solutions to this problem. The first solution is to stop the frame-shifting from happening. For example, if a drug could be administered to get the ribosome back on track, the proteins needed for viral replication would not be produced.

The other method is to shut down or stall the ribosome factory. For example, in one E. coli cell, more than 15,000 ribosomes might be present. If the ribosomes in the E. coli cell were shut down and unable to produce additional proteins, the bacteria would not be able to replicate. The body would eventually get rid of the foreign trespasser safely.

"Our bodies' natural defenses are constantly working to keep us healthy," Cornish said. "We only get sick when the viruses or bacteria are able to replicate enough to overwhelm our defenses. If we can determine how to stop them from replicating, the body's defenses can take over and get rid of the invaders naturally."

Cornish's research also could be applied to cancer eventually. Cancer survives by replicating cells at a much faster rate than other areas of the body. As the cancer cells grow faster, they need more proteins. If a drug could be designed to stall the ribosome from producing proteins, the cancer would no longer have enough proteins to continue replicating.

Cornish believes that because the ribosome is such a large molecule, it might be possible to create a drug that would help the ribosome if it were disrupted and frame-shifting occurred. However, scientists need to understand the fundamental biology of the ribosome and the communication links among molecules before drug development can begin.

Cornish received his doctorate from Texas A&M University in 2005 and was in a post-doctoral program at the University of Illinois before coming to MU in 2010 for his current position. His research on this work has been published recently in the Proceedings of the National Academies of Science, Science, Molecular Cell and the Journal of Molecular Biology.








MU Health Magazine

Divider

News and Events

David Chang Grill with Caution
Wire bristles from barbecue brushes can cause serious injuries
Tahir Rahman Extreme Beliefs Often Mistaken for Insanity, New Study Finds
Researchers say new term offers more precise definition of non-psychotic behaviors
Paul Tatum Family Medicine Professor Wins Distinguished Physician Award
Tatum recognized for outstanding care of patients near the end of life
Seth Sherman Minimally Invasive Tendon Repair Technique Supports Knee Movement Sooner after Surgery
Researchers found suture anchors, a less-invasive repair technique, responded better to strength-testing after surgery
2016 Graduation MU School of Medicine Awards 86 Medical Degrees at Commencement Ceremony
The graduates will go on to receive additional training as resident physicians in their chosen specialties
Patrice Delafontaine MU School of Medicine Dean Inducted into Prestigious Medical Society
Delafontaine joins elite group of physicians in American Clinical and Climatological Association
Steven Zweig MU Family Medicine Ranked Among Nation’s Best by U.S. News & World Report
Department has been in top 10 for 23 consecutive years
Uzma Khan MU Initiative Helps Rural Doctors Treat Chronic Pain
Show-Me ECHO to offer special training session April 28
Legacy Teachers MU School of Medicine Program Expands to Other Medical Schools
MU’s Legacy Teachers program lets students recognize patients as educators
Susan Nagel Oil and Gas Wastewater Disposal May Increase Endocrine Disrupting Activity
Scientists draw conclusions after study at natural gas and oil extraction wastewater disposal facility
St. Baldricks 2016 Participants Go Bald for Childhood Cancer Research
Community donates more than $40,000 to the cause



Media Relations
University of Missouri Health System
One Hospital Drive, DC028.00
Columbia, MO 65212
24/7 on-call pager: (573) 876-0708

Mary Jenkins
jenkinsmg@health.missouri.edu
(573) 882-7299

Jeff Hoelscher
hoelscherj@health.missouri.edu
(573) 884-1608

Derek Thompson
thompsonder@health.missouri.edu
(573) 882-3323

Diamond Dixon
DixonDi@health.missouri.edu
(573) 884-7541

Justin Kelley (Photographer)
kelleyju@health.missouri.edu
(573) 882-5786
Pager (573) 397-9289


Web Communications
University of Missouri Health System
One Hospital Drive, MA204G, DC018.00
Columbia, MO 65212
(573) 884-0298

Jennifer Orford
orfordj@health.missouri.edu
(573) 882-0298

Deidra Ashley
ashleyde@missouri.edu
(573) 884-3988

Jesslyn Chew
chewj@missouri.edu
(573) 884-2891

Velvet Hasner
hasnerv@health.missouri.edu
(573) 884-1115

Justin Willett
willettj@health.missouri.edu
(573) 884-7740



Printer Friendly
Follow us on Twitter!   Facebook   YouTube Videos   Instagram   Pinterest  
Website created and maintained by the Office of Communications. Contact the MU School of Medicine.
Revised: April 27, 2013 - Copyright © 2014 - Curators of the University of Missouri. All rights reserved. DMCA and other copyright information. An equal opportunity/access/affirmative action/pro-disabled and veteran employer.