University of Missouri School of Medicine MU Health School of Medicine
News Divider

Compound improves cardiac function in mice with genetic heart defect


MU study recognized by American Heart Association

Congenital heart disease is the most common form of birth defect, affecting one out of every 125 babies, according to the National Institutes of Health. Researchers from the University of Missouri recently found success using a drug to treat laboratory mice with one form of congenital heart disease, hypertrophic cardiomyopathy — a weakening of the heart caused by abnormally thick muscle. By suppressing a faulty protein, the researchers reduced the thickness of the mice’s heart muscles and improved their cardiac functioning.

Maike Krenz, MD, has been studying hypertrophic cardiomyopathy for nearly 10 years, soon after a gene was discovered in 2001 that linked the disease to the genetic conditions Noonan syndrome and LEOPARD syndrome. In Noonan and LEOPARD syndromes, the thickened heart muscle of hypertrophic cardiomyopathy is caused by a defective Shp2 protein, created by a mutation in the gene PTPN11.

Krenz

“Previously, not much has been known about the biochemistry behind Shp2 and hypertrophic cardiomyopathy,” said Krenz, an assistant professor of medical pharmacology and physiology at the MU School of Medicine, and a researcher at MU’s Dalton Cardiovascular Research Center. “We know the thickened heart muscle is sick and doesn’t work properly, and we know a defective Shp2 protein can cause heart muscle to thicken. However, to create an effective treatment, we need to know what Shp2 is doing inside the heart to cause the defect.”

To test whether they could interrupt the heart’s hypersensitivity to growth signals, the researchers gave a chemical compound, PHPS1, to mice with a mutated gene that produces the defective Shp2 protein.

“Not only did the compound reduce the thickness of the heart muscle to the size of normal heart muscle, but it also improved the cardiac pumping of the heart,” Krenz said. “That’s important because people with hypertrophic cardiomyopathy have an increased risk of sudden cardiac death. If we could develop an effective treatment for the disease and improve patients’ heart function, we could save many people’s lives.”

Because of the role Shp2 plays in signaling heart growth, Krenz believes the research could be translated in the future into improved treatments for other types of heart disease, such as damage caused by heart attack.

Krenz presented the research findings, “Inhibition of Shp2’s Phosphatase Activity Ameliorates Cardiac Hypertrophy in LEOPARD Syndrome Models,” at the American Heart Association’s Scientific Sessions conference in November 2013, where it received the Outstanding Research Award in Pediatric Cardiology. LEOPARD syndrome is related to Noonan syndrome and receives its name from an acronym for multiple lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth and deafness.

Click here to download a high resolution portrait of Krenz.



MU Health Magazine

Divider

News and Events

Evans Evans Named Associate Dean and Chief Academic Officer for Springfield Clinical Campus
Role is to engage Columbia and Springfield leaders to provide strategic direction and vision
Robin Kruse, PhD Lack of Research Keeps End-of-Life Care in Status Quo
MU researcher finds only 10 clinical trials conducted in hospices since 1985, says more studies could improve patient care

Govindarajan MU Neurologist Earns National Education Honor
Raghav Govindarajan, MD, to receive National Golden Apple Award for Teaching Excellence

David Beversdorf Blood Pressure Medicine May Improve Conversational Skills of Individuals with Autism
Propranolol found to boost performance on six key components of communication

HMI Health Management and Informatics Professor Leads Largest Health Survey in Missouri
MU research center receives $2.13 million grant to survey more than 52,000 Missourians
Kattesh Katti, PhD MU Radiology Professor Named India’s Person of the Year in Science
Katti honored for breakthrough research in nanomedicine and green nanotechnology
Frederick Fraunfelder, MD Chickenpox, Shingles Vaccine May Cause Corneal Inflammation in Some Patients
Primary care physicians should be aware of possible vision side effect for susceptible patients
Infant-friendly Flu Vaccine Infant-friendly Flu Vaccine Developed with Key Protein
Natural additive offers protection against flu for babies younger than six months
Rural Area Medical School Program Addresses Rural Physician Shortage
Service learning enhances medical training, may increase rural practitioners




Media Relations
University of Missouri Health System
One Hospital Drive, DC028.00
Columbia, MO 65212
24/7 on-call pager: (573) 876-0708

Mary Jenkins
jenkinsmg@health.missouri.edu
(573) 882-7299

Jeff Hoelscher
hoelscherj@health.missouri.edu
(573) 884-1608

Derek Thompson
thompsonder@health.missouri.edu
(573) 882-3323

Diamond Dixon
DixonDi@health.missouri.edu
(573) 884-7541

Justin Kelley (Photographer)
kelleyju@health.missouri.edu
(573) 882-5786
Pager (573) 397-9289


Web Communications
University of Missouri Health System
One Hospital Drive, MA204G, DC018.00
Columbia, MO 65212
(573) 884-0298

Jennifer Orford
orfordj@health.missouri.edu
(573) 882-0298

Jesslyn Chew
chewj@missouri.edu
(573) 884-2891

Velvet Hasner
hasnerv@health.missouri.edu
(573) 884-1115

Justin Willett
willettj@health.missouri.edu
(573) 884-7740



Printer Friendly
Follow us on Twitter!   Facebook   YouTube Videos   Instagram   Pinterest  
Website created and maintained by the Office of Communications. Contact the MU School of Medicine.
Revised: February 04, 2014 - Copyright © 2014 - Curators of the University of Missouri. All rights reserved. DMCA and other copyright information. An equal opportunity/access/affirmative action/pro-disabled and veteran employer.