University of Missouri School of Medicine MU Health School of Medicine
News Divider

MU Researchers Find Gene Therapy Protects Mice from Heart Condition


The condition is a leading cause of death for those with Duchenne muscular dystrophy

A new gene therapy developed by researchers at the University of Missouri School of Medicine has shown to protect mice from a life-threatening heart condition caused by muscular dystrophy.

Lai

“This is a new therapeutic avenue,” said Yi Lai, PhD, the leading author of the study and assistant research professor in the MU School of Medicine’s Department of Molecular Microbiology and Immunology. “This is just a first step, but we hope this could lead to a treatment for people with this devastating heart condition, which is a leading cause of death for people with Duchenne muscular dystrophy.”

About one in 3,500 children, mostly boys, are born with Duchenne muscular dystrophy (DMD). They experience a progressive wasting away of muscles, starting in the legs and pelvis. Children with DMD have difficulty walking, and most need wheelchairs by age 12.

As DMD depletes the skeletal muscles, it also causes the heart to decay. A weakened heart kills up to 40 percent of people with DMD, usually by their 20s or early 30s. DMD originates with mutations in a single gene. For more than two decades, researchers have explored using gene therapy, an experimental treatment, to replace the flawed gene with a healthy copy.

Duan
Duan

The recent MU study, however, did not try to replace the faulty gene. The researchers targeted a different gene — one involved with the heart’s built-in system for responding to heart attacks and other emergencies.

This targeted gene expresses a protein called nNOS. During short-term stresses, nNOS activates briefly to help regulate the heart. The MU researchers altered the gene to enable more efficient transfer of the nNOS gene to mouse hearts.

Seven months after the gene therapy, the mice who received the treatment showed significantly improved overall heart health. On most disease indicators, the researchers found that the treatment protected their hearts from the damage of DMD.

“The study showed for the first time that a modified nNOS gene could be delivered through gene therapy to protect the hearts of mice from Duchenne muscular dystrophy,” said Dongsheng Duan, PhD, co-author of the study and Margaret Proctor Mulligan Professor in Medical Research at the MU School of Medicine.

“Since nNOS protects against multiple heart diseases, this method could one day be extended to the treatment of other heart diseases, such as heart failure or a heart attack,” Duan said.

The technique is in an early stage of development and will require more research before potential applications in humans are explored.

The study, “Partial Restoration of Cardiac Function with ∆PDZ nNOS in Aged MDX Model of Duchenne Cardiomyopathy,” was published in June in Human Molecular Genetics. Along with Lai and Duan, other study authors include Junling Zhao, research technician, Yongping Yue, senior research specialist, and Nalinda B. Wasala, graduate student, all of the MU Department of Molecular Microbiology and Immunology.

Click here to download a high resolution portrait of Lai.
Click here to download a high resolution portrait of Duan.

 


MU Health Magazine

Divider

News and Events

Evans Evans Named Associate Dean and Chief Academic Officer for Springfield Clinical Campus
Role is to engage Columbia and Springfield leaders to provide strategic direction and vision
Robin Kruse, PhD Lack of Research Keeps End-of-Life Care in Status Quo
MU researcher finds only 10 clinical trials conducted in hospices since 1985, says more studies could improve patient care

Govindarajan MU Neurologist Earns National Education Honor
Raghav Govindarajan, MD, to receive National Golden Apple Award for Teaching Excellence

David Beversdorf Blood Pressure Medicine May Improve Conversational Skills of Individuals with Autism
Propranolol found to boost performance on six key components of communication

HMI Health Management and Informatics Professor Leads Largest Health Survey in Missouri
MU research center receives $2.13 million grant to survey more than 52,000 Missourians
Kattesh Katti, PhD MU Radiology Professor Named India’s Person of the Year in Science
Katti honored for breakthrough research in nanomedicine and green nanotechnology
Frederick Fraunfelder, MD Chickenpox, Shingles Vaccine May Cause Corneal Inflammation in Some Patients
Primary care physicians should be aware of possible vision side effect for susceptible patients
Infant-friendly Flu Vaccine Infant-friendly Flu Vaccine Developed with Key Protein
Natural additive offers protection against flu for babies younger than six months
Rural Area Medical School Program Addresses Rural Physician Shortage
Service learning enhances medical training, may increase rural practitioners




Media Relations
University of Missouri Health System
One Hospital Drive, DC028.00
Columbia, MO 65212
24/7 on-call pager: (573) 876-0708

Mary Jenkins
jenkinsmg@health.missouri.edu
(573) 882-7299

Jeff Hoelscher
hoelscherj@health.missouri.edu
(573) 884-1608

Derek Thompson
thompsonder@health.missouri.edu
(573) 882-3323

Diamond Dixon
DixonDi@health.missouri.edu
(573) 884-7541

Justin Kelley (Photographer)
kelleyju@health.missouri.edu
(573) 882-5786
Pager (573) 397-9289


Web Communications
University of Missouri Health System
One Hospital Drive, MA204G, DC018.00
Columbia, MO 65212
(573) 884-0298

Jennifer Orford
orfordj@health.missouri.edu
(573) 882-0298

Jesslyn Chew
chewj@missouri.edu
(573) 884-2891

Velvet Hasner
hasnerv@health.missouri.edu
(573) 884-1115

Justin Willett
willettj@health.missouri.edu
(573) 884-7740



Printer Friendly
Follow us on Twitter!   Facebook   YouTube Videos   Instagram   Pinterest  
Website created and maintained by the Office of Communications. Contact the MU School of Medicine.
Revised: September 30, 2014 - Copyright © 2014 - Curators of the University of Missouri. All rights reserved. DMCA and other copyright information. An equal opportunity/access/affirmative action/pro-disabled and veteran employer.