University of Missouri School of Medicine MU Health School of Medicine
News Divider

MU Researchers Discover Protein's Ability To Inhibit HIV Release


TIM-family proteins also play role in Ebola and other viral infections

A family of proteins that promotes virus entry into cells also has the ability to block the release of HIV and other viruses, University of Missouri researchers have found.

“This is a surprising finding that provides new insights into our understanding of not only HIV infection, but also that of Ebola and other viruses,” said Shan-Lu Liu, MD, PhD, associate professor in the MU School of Medicine’s Department of Molecular Microbiology and Immunology.

Shan-Lu Liu, MD, PhD
Liu

The study was recently published in the Proceedings of the National Academy of Sciences. Liu, the corresponding author of the study, is also an investigator with the Christopher S. Bond Life Sciences Center at MU.

According to estimates from the Centers for Disease Control and Prevention, more than one million Americans currently are living with HIV infection. AIDS, which stands for acquired immunodeficiency syndrome, is a condition characterized by progressive failure of the immune system. It is caused by the human immunodeficiency virus type 1 (HIV-1).

When HIV-1 or any virus infects a cell, it replicates and spreads to other cells. One type of cellular protein — T cell immunoglobulin and mucin domain, or TIM-1 — has previously been shown to promote entry of some highly pathogenic viruses into host cells. Now, the MU researchers have found that the same protein possesses a unique ability to block the release of HIV-1 and Ebola virus.

“This study shows that TIM proteins keep viral particles from being released by the infected cell and instead keep them tethered to the cell surface,” said Gordon Freeman, PhD, an associate professor of medicine with Harvard Medical School’s Dana-Farber Cancer Institute, who was not affiliated with the study. “This is true for several important enveloped viruses including HIV and Ebola. We may be able to use this insight to slow the production of these viruses.”

Minghua Li
Li

Under the supervision of Liu, Minghua Li, a graduate student in the MU Pathobiology Area Program, performed a series of experiments that revealed the protein’s ability to inhibit HIV-1 release, resulting in diminished viral production and replication.

HIV-1 attacks cells that are vital to the body’s immune system, such as T cells. These white blood cells play an important role in the body’s response to infection, but HIV-1 disrupts the cells’ ability to fight back against infection. When the virus enters a host cell, it infects the cell and replicates, producing viral particles that spread to and infect other cells. The researchers found that as the viral particles attempt to bud from, or leave, the infected cell, the TIM-family proteins located on the surface of the cell can attach to lipids on the surface of the viral particle.

These lipids – known as phosphatidylserine (PS) — are normally present on the inner side of the cellular membrane but can be exposed to the outer side upon viral infection. When the TIM-family proteins come in contact with PS, the viral particle becomes attached to the host cell, keeping the particle from being released from the cell. Because TIM-family proteins and PS are present on the surface of the cell and the viral particle, the viral particles get stuck to one another, forming a network of viral particles that accumulate on the surface of the host cell, rather than being released to infect other cells.

By using molecular, biochemical and electron microscopic approaches, the researchers observed the TIM and PS interactions in human cells. The next step is for the researchers to study the biological significance of TIM-family proteins in animals and patients and to determine the fate of the infected cell once it accumulates a buildup of viral particles.

“We are not at the point to draw a conclusion as to whether this is a positive or a negative factor,” Liu said. “However, this discovery furthers our ultimate goal of understanding the biology of TIM-family proteins and potentially developing applications for future antivirus therapies.”

The study, “TIM-Family Proteins Inhibit HIV-1 Release,” is supported in part by the National Institutes of Health and the University of Missouri. In addition to Liu and Li, researchers include Eric Freed, PhD, senior investigator with the National Cancer Institute (NCI) HIV Drug Resistance Program; Sherimay Ablan, biologist with the NCI HIV Drug Resistance Program; Marc Johnson, PhD, associate professor in the MU Department of Molecular Microbiology and Immunology; Chunhui Miao and Matthew Fuller, graduate students in the MU Department of Molecular Microbiology and Immunology; Yi-Min Zheng, MD, MS, senior research specialist with the Christopher S. Bond Life Sciences Center at MU; Paul Rennert, PhD, founder and principal of SugarCone Biotech LLC in Holliston, Massachusetts; and Wendy Maury, PhD, professor of microbiology at the University of Iowa.

 


MU Health Magazine

Divider

News and Events

Evans Evans Named Associate Dean and Chief Academic Officer for Springfield Clinical Campus
Role is to engage Columbia and Springfield leaders to provide strategic direction and vision
Robin Kruse, PhD Lack of Research Keeps End-of-Life Care in Status Quo
MU researcher finds only 10 clinical trials conducted in hospices since 1985, says more studies could improve patient care

Govindarajan MU Neurologist Earns National Education Honor
Raghav Govindarajan, MD, to receive National Golden Apple Award for Teaching Excellence

David Beversdorf Blood Pressure Medicine May Improve Conversational Skills of Individuals with Autism
Propranolol found to boost performance on six key components of communication

HMI Health Management and Informatics Professor Leads Largest Health Survey in Missouri
MU research center receives $2.13 million grant to survey more than 52,000 Missourians
Kattesh Katti, PhD MU Radiology Professor Named India’s Person of the Year in Science
Katti honored for breakthrough research in nanomedicine and green nanotechnology
Frederick Fraunfelder, MD Chickenpox, Shingles Vaccine May Cause Corneal Inflammation in Some Patients
Primary care physicians should be aware of possible vision side effect for susceptible patients
Infant-friendly Flu Vaccine Infant-friendly Flu Vaccine Developed with Key Protein
Natural additive offers protection against flu for babies younger than six months
Rural Area Medical School Program Addresses Rural Physician Shortage
Service learning enhances medical training, may increase rural practitioners




Media Relations
University of Missouri Health System
One Hospital Drive, DC028.00
Columbia, MO 65212
24/7 on-call pager: (573) 876-0708

Mary Jenkins
jenkinsmg@health.missouri.edu
(573) 882-7299

Jeff Hoelscher
hoelscherj@health.missouri.edu
(573) 884-1608

Derek Thompson
thompsonder@health.missouri.edu
(573) 882-3323

Diamond Dixon
DixonDi@health.missouri.edu
(573) 884-7541

Justin Kelley (Photographer)
kelleyju@health.missouri.edu
(573) 882-5786
Pager (573) 397-9289


Web Communications
University of Missouri Health System
One Hospital Drive, MA204G, DC018.00
Columbia, MO 65212
(573) 884-0298

Jennifer Orford
orfordj@health.missouri.edu
(573) 882-0298

Jesslyn Chew
chewj@missouri.edu
(573) 884-2891

Velvet Hasner
hasnerv@health.missouri.edu
(573) 884-1115

Justin Willett
willettj@health.missouri.edu
(573) 884-7740



Printer Friendly
Follow us on Twitter!   Facebook   YouTube Videos   Instagram   Pinterest  
Website created and maintained by the Office of Communications. Contact the MU School of Medicine.
Revised: August 26, 2014 - Copyright © 2014 - Curators of the University of Missouri. All rights reserved. DMCA and other copyright information. An equal opportunity/access/affirmative action/pro-disabled and veteran employer.