University of Missouri School of Medicine MU Health School of Medicine
News Divider
Hwang
In a study recently published in PNAS, a National Academy of Sciences journal, a team of cystic fibrosis researchers led by Tzyh-Chang Hwang, PhD, demonstrate how they identified a key mechanism that could influence the behavior of the CFTR protein and flow of chloride ions in and out of cells through the protein. Chloride is a key ingredient in salt, and people with cystic fibrosis have an imbalance of salt caused by the defective CFTR protein.


Key Component in Protein that Causes Cystic Fibrosis Identified


Findings may lay foundation for the development of medications

Nearly 70,000 people worldwide are living with cystic fibrosis, a life-threatening genetic disease. There currently is no cure for the condition, but researchers from the University of Missouri have identified a key component in the protein that causes the disease. It is a finding that may lay the foundation for the development of new medications and improved therapies.

“We know that cystic fibrosis is caused by mutations in a gene called CFTR, but we don’t know exactly how these mutations affect the function of the CFTR protein,” said Tzyh-Chang Hwang, PhD, professor of medical pharmacology and physiology at the MU School of Medicine and lead author of the study. “In fact, there are nearly 2,000 mutations that could occur in the protein. However, our study identified two amino acids in the CFTR protein that serve as a sort of gate. This gate is a key factor in regulating the flow of chloride ions — one of the key ingredients in salt — into and out of the cells through the CFTR protein.”

People with cystic fibrosis have an imbalance of salt in their bodies caused by the defective CFTR protein. Because there is too little salt and water on the outside of the cells, the thin layer of mucus that helps keep the lungs free of bacteria becomes very thick and difficult to expel by coughing. This thick mucus can clog the airways and lead to dangerous infections. Although advances in the understanding and treatment of the condition have allowed many people with the disease to live into their early 40s, the majority of patients with cystic fibrosis die of respiratory failure.

“In many ways, the function of the CFTR protein can be compared to a motion-activated water faucet,” Hwang said. “All of the parts need to be functioning properly in order for the faucet to work. The motion sensor needs to detect your hand movements and send a signal to open the gate, enabling the flow of water. When the gate in the CFTR protein is defective, the flow of ions across the cell membrane is disrupted. By identifying the amino acids that make up this gate, we now have a clear idea as to why a mutation in either of these two amino acids causes cystic fibrosis.”

For decades, therapies for cystic fibrosis worked to maximize organ function and stave off organ failure, but did not address the root causes of the disease. However, in 2012, the U.S. Food and Drug Administration approved the drug, ivacaftor, to treat the underlying cause of cystic fibrosis in individuals with a specific mutation. While the drug targets the defective protein, the actual ways by which it enhances CFTR function are largely unknown. Hwang’s previous research has shown how the drug affects the CFTR protein’s gate, and his latest study builds upon that knowledge by identifying the exact location of the gate. This allows Hwang and his team to further understand not only how the drug works, but also could shed light on where the drug works and therefore potentially improve upon its effects.

“When your water faucet is broken, you can call a plumber to repair it,” Hwang said. “But if the plumber doesn’t understand how the faucet works, how is he supposed to fix it? By understanding the physical and chemical basis of CFTR function, we, the molecular plumbers, are equipped with the tools to find ways to correct the defective protein’s function, and subsequently boost treatments and ultimately improve the lives of cystic fibrosis patients.”

The study, “Localizing a Gate in CFTR,” recently was published in PNAS, the journal of the Proceedings of the National Academy of Sciences of the United States of America. The research is funded by the National Institutes of Health (R01DK55835) and the Cystic Fibrosis Foundation.

Click here to download a high-resolution photo of Tzyh-Chang Hwang, PhD

Posted May 18, 2015



MU Health Magazine

Divider

News and Events

David Chang Grill with Caution
Wire bristles from barbecue brushes can cause serious injuries
Tahir Rahman Extreme Beliefs Often Mistaken for Insanity, New Study Finds
Researchers say new term offers more precise definition of non-psychotic behaviors
Paul Tatum Family Medicine Professor Wins Distinguished Physician Award
Tatum recognized for outstanding care of patients near the end of life
Seth Sherman Minimally Invasive Tendon Repair Technique Supports Knee Movement Sooner after Surgery
Researchers found suture anchors, a less-invasive repair technique, responded better to strength-testing after surgery
2016 Graduation MU School of Medicine Awards 86 Medical Degrees at Commencement Ceremony
The graduates will go on to receive additional training as resident physicians in their chosen specialties
Patrice Delafontaine MU School of Medicine Dean Inducted into Prestigious Medical Society
Delafontaine joins elite group of physicians in American Clinical and Climatological Association
Steven Zweig MU Family Medicine Ranked Among Nation’s Best by U.S. News & World Report
Department has been in top 10 for 23 consecutive years
Uzma Khan MU Initiative Helps Rural Doctors Treat Chronic Pain
Show-Me ECHO to offer special training session April 28
Legacy Teachers MU School of Medicine Program Expands to Other Medical Schools
MU’s Legacy Teachers program lets students recognize patients as educators
Susan Nagel Oil and Gas Wastewater Disposal May Increase Endocrine Disrupting Activity
Scientists draw conclusions after study at natural gas and oil extraction wastewater disposal facility
St. Baldricks 2016 Participants Go Bald for Childhood Cancer Research
Community donates more than $40,000 to the cause



Media Relations
University of Missouri Health System
One Hospital Drive, DC028.00
Columbia, MO 65212
24/7 on-call pager: (573) 876-0708

Mary Jenkins
jenkinsmg@health.missouri.edu
(573) 882-7299

Jeff Hoelscher
hoelscherj@health.missouri.edu
(573) 884-1608

Derek Thompson
thompsonder@health.missouri.edu
(573) 882-3323

Diamond Dixon
DixonDi@health.missouri.edu
(573) 884-7541

Justin Kelley (Photographer)
kelleyju@health.missouri.edu
(573) 882-5786
Pager (573) 397-9289


Web Communications
University of Missouri Health System
One Hospital Drive, MA204G, DC018.00
Columbia, MO 65212
(573) 884-0298

Jennifer Orford
orfordj@health.missouri.edu
(573) 882-0298

Deidra Ashley
ashleyde@missouri.edu
(573) 884-3988

Jesslyn Chew
chewj@missouri.edu
(573) 884-2891

Velvet Hasner
hasnerv@health.missouri.edu
(573) 884-1115

Justin Willett
willettj@health.missouri.edu
(573) 884-7740



Printer Friendly
Follow us on Twitter!   Facebook   YouTube Videos   Instagram   Pinterest  
Website created and maintained by the Office of Communications. Contact the MU School of Medicine.
Revised: June 05, 2015 - Copyright © 2014 - Curators of the University of Missouri. All rights reserved. DMCA and other copyright information. An equal opportunity/access/affirmative action/pro-disabled and veteran employer.