University of Missouri School of Medicine MU Health School of Medicine
News Divider

March 11, 2016

Neuron

New Imaging Technique May Give Physicians Clearer Picture of Stroke Damage

Real-time imaging of neurological damage could lead to improved stroke care

According to the American Heart Association, ischemic strokes account for nearly 90 percent of all strokes. They occur when a blocked artery prevents blood from getting to the brain and usually result in long-term disability or death. Now, a team of researchers led by the University of Missouri School of Medicine has developed a new, real-time method of imaging molecular events after strokes ― a finding that may lead to improved care for patients.

Zezong Gu, PhD,

Gu

"During an ischemic stroke, harmful enzymes called gelatinase become overactive in areas of the brain where blood flow is cut off, said Zezong Gu, PhD, an associate professor of pathology and anatomical sciences at the MU School of Medicine and lead author of the study. "Over-activation of these enzymes causes brain damage. Our team hypothesized that if we could visualize and track this activity in real-time, we could then work on developing a way to block the activity and prevent brain damage from occurring."

Magnetic resonance imaging (MRI) is commonly used to diagnose strokes because it produces precise, sectional images of the brain. Although these images can verify the region of arterial blockages within the brain, current contrast agents are not specific or sensitive enough to reveal important molecular events, such as gelatinase activity, on an MRI image.

To overcome this obstacle, the researchers used peptides that specifically recognize gelatinase activity. The peptides were tagged with contrast agents through a process developed by research team member Roger Tsien, PhD, a biochemist and Nobel Laureate at the University of California, San Diego.

"Once the tagged peptides traveled to the site of increased gelatinase activity, they were absorbed into the cells with this activated enzyme," Gu said. "When enough of these peptides were absorbed, the stroke site was visible on an MRI. We tested this technique in both cell-based and mouse models of ischemic stroke. Using this method, we successfully tracked gelatinase activity."

Gu suggests that real-time imaging of this activity could lead to a better understanding of how to treat strokes and mediate the damage they cause.

"Our findings indicate that tagged peptides can be used as a non-invasive probe to detect and track gelatinase activity," Gu said. "This process may serve as an additional tool for clinicians to treat their patients if a viable inhibitor can be developed to prevent the damage caused by this activity."

Gu and his team currently are working to develop such a gelatinase inhibitor.

The study, "Gelatinase Activity Imaged by Activatable Cell-penetrating Peptides in Cell-based and In Vivo Models of Stroke," recently was published in the Journal of Cerebral Blood Flow and Metabolism. Funding for the study was provided by the National Institutes of Health, the Dana Foundation, American Heart Association National Scientist Development Award (09SDG2260983) and the MU Department Research Fund. The content of the article is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Download a high-resolution photo of Zezong Gu, PhD.


Media Contacts

Media Relations
University of Missouri Health System
One Hospital Drive, DC028.00
Columbia, MO 65212
24/7 on-call pager: (573) 876-0708

Mary Jenkins
Public Relations Manager
Email
(573) 882-7299

Jeff Hoelscher
Media Relations Coor.
Email
(573) 884-1608

Derek Thompson
Media Relations Coor.
Email
(573) 882-3323

Diamond Dixon
Media Relations Coor.
Email
(573) 884-7541

Justin Kelley
Media Producer (Photographer)
Email
(573) 882-5786
Pager: (573) 397-9289

Web Communications
University of Missouri Health System
One Hospital Drive, MA204G, DC018.00
Columbia, MO 65212
(573) 884-0298

Jennifer Orford
Communications Manager
Email
(573) 884-0298

Deidra Ashley
Strat. Comm. Associate
Email
(573) 884-3988

Jesslyn Chew
Strat. Comm. Associate
Email
(573) 884-2891

Velvet Hasner
Strat. Comm. Associate
Email
(573) 884-1115

Justin Willett
Strat. Comm. Associate
Email
(573) 884-7740

MU Health Magazine
Printer Friendly
Follow us on Twitter!   Facebook   YouTube Videos   Instagram   Pinterest  
Website created and maintained by the Office of Communications. Contact the MU School of Medicine.
Revised: March 11, 2016 - Copyright © 2014 - Curators of the University of Missouri. All rights reserved. DMCA and other copyright information. An equal opportunity/access/affirmative action/pro-disabled and veteran employer.