University of Missouri School of Medicine MU Health School of Medicine
News Divider
Hwang
In a study recently published in PNAS, a National Academy of Sciences journal, a team of cystic fibrosis researchers led by Tzyh-Chang Hwang, PhD, demonstrate how they identified a key mechanism that could influence the behavior of the CFTR protein and flow of chloride ions in and out of cells through the protein. Chloride is a key ingredient in salt, and people with cystic fibrosis have an imbalance of salt caused by the defective CFTR protein.


Key Component in Protein that Causes Cystic Fibrosis Identified


Findings may lay foundation for the development of medications

Nearly 70,000 people worldwide are living with cystic fibrosis, a life-threatening genetic disease. There currently is no cure for the condition, but researchers from the University of Missouri have identified a key component in the protein that causes the disease. It is a finding that may lay the foundation for the development of new medications and improved therapies.

“We know that cystic fibrosis is caused by mutations in a gene called CFTR, but we don’t know exactly how these mutations affect the function of the CFTR protein,” said Tzyh-Chang Hwang, PhD, professor of medical pharmacology and physiology at the MU School of Medicine and lead author of the study. “In fact, there are nearly 2,000 mutations that could occur in the protein. However, our study identified two amino acids in the CFTR protein that serve as a sort of gate. This gate is a key factor in regulating the flow of chloride ions — one of the key ingredients in salt — into and out of the cells through the CFTR protein.”

People with cystic fibrosis have an imbalance of salt in their bodies caused by the defective CFTR protein. Because there is too little salt and water on the outside of the cells, the thin layer of mucus that helps keep the lungs free of bacteria becomes very thick and difficult to expel by coughing. This thick mucus can clog the airways and lead to dangerous infections. Although advances in the understanding and treatment of the condition have allowed many people with the disease to live into their early 40s, the majority of patients with cystic fibrosis die of respiratory failure.

“In many ways, the function of the CFTR protein can be compared to a motion-activated water faucet,” Hwang said. “All of the parts need to be functioning properly in order for the faucet to work. The motion sensor needs to detect your hand movements and send a signal to open the gate, enabling the flow of water. When the gate in the CFTR protein is defective, the flow of ions across the cell membrane is disrupted. By identifying the amino acids that make up this gate, we now have a clear idea as to why a mutation in either of these two amino acids causes cystic fibrosis.”

For decades, therapies for cystic fibrosis worked to maximize organ function and stave off organ failure, but did not address the root causes of the disease. However, in 2012, the U.S. Food and Drug Administration approved the drug, ivacaftor, to treat the underlying cause of cystic fibrosis in individuals with a specific mutation. While the drug targets the defective protein, the actual ways by which it enhances CFTR function are largely unknown. Hwang’s previous research has shown how the drug affects the CFTR protein’s gate, and his latest study builds upon that knowledge by identifying the exact location of the gate. This allows Hwang and his team to further understand not only how the drug works, but also could shed light on where the drug works and therefore potentially improve upon its effects.

“When your water faucet is broken, you can call a plumber to repair it,” Hwang said. “But if the plumber doesn’t understand how the faucet works, how is he supposed to fix it? By understanding the physical and chemical basis of CFTR function, we, the molecular plumbers, are equipped with the tools to find ways to correct the defective protein’s function, and subsequently boost treatments and ultimately improve the lives of cystic fibrosis patients.”

The study, “Localizing a Gate in CFTR,” recently was published in PNAS, the journal of the Proceedings of the National Academy of Sciences of the United States of America. The research is funded by the National Institutes of Health (R01DK55835) and the Cystic Fibrosis Foundation.

Click here to download a high-resolution photo of Tzyh-Chang Hwang, PhD

Posted May 18, 2015



News and Events

Hwang Key Component in Protein that Causes Cystic Fibrosis Identified
Findings may lay foundation for the development of medications

SOM Graduation 2015 MU School of Medicine to Award 101 Medical Degrees at Commencement
Forty-five will remain in Missouri for specialty training in residency

George Kracke Potential New Painkiller Provides Longer Lasting Effects
Early studies show promise for alternative type of anesthetic

Durante Enzyme Responsible for Obesity-Related Hypertension Identified
Discovery may lead to new treatment options for arterial disease caused by obesity

Family Medicine AAFP Award MU Family Medicine Ranked Among Nation’s Best by AAFP
Medical school in top 10 for helping build family physician workforce

Legacy Teachers Medical Students Thank Legacy Teachers
MU’s unique program celebrates patients’ role in teaching future physicians

58th Alumni awards Eight Graduates and Supporters Receive 58th Annual Alumni Awards
Syed Arshad Husain presented with top honor

St. Baldricks Participants Go Bald for Childhood Cancer Research
Community donates more than $33,000 to the cause

Teresa Lever, MD New Model Could Help Identify Root Cause of Swallowing Disorder
Findings may ‘change the landscape’ of dysphagia intervention


Medzou Golf Tournament Spend a Day on the Greens to Fund a Free Community Health Clinic
Money raised helps MedZou clinic care for uninsured mid-Missourians

Laine Young-Walker, MD Bridging the Gap in Psychiatric Care for Children
MU School of Medicine program expands access in Boone County

Erika Ringdahl Family Medicine Residency Program
Leader Receives National Award

Ringdahl recognized by American Academy
of Family Physicians for advancing specialty




Media Relations
University of Missouri Health System
One Hospital Drive, DC028.00
Columbia, MO 65212
24/7 on-call pager: (573) 876-0708

Mary Jenkins
jenkinsmg@health.missouri.edu
(573) 882-7299

Jeff Hoelscher
hoelscherj@health.missouri.edu
(573) 884-1608

Derek Thompson
thompsonder@health.missouri.edu
(573) 882-3323

Justin Kelley (Photographer)
kelleyju@health.missouri.edu
(573) 882-5786
Pager (573) 397-9289


Web Communications
University of Missouri Health System
One Hospital Drive, MA204G, DC018.00
Columbia, MO 65212
(573) 884-0298

Rich Gleba
glebar@health.missouri.edu
(573) 884-0298

Laura Gerding, APR
gerdingla@health.missouri.edu
(573) 882-9193

Velvet Hasner
hasnerv@health.missouri.edu
(573) 884-1115



Printer Friendly
Follow us on Twitter!   Facebook   YouTube Videos   Instagram   Pinterest  
Website created and maintained by the Office of Communications. Contact the MU School of Medicine.
Revised: May 19, 2015 - Copyright © 2014 - Curators of the University of Missouri. All rights reserved. DMCA and other copyright information. An equal opportunity/access/affirmative action/pro-disabled and veteran employer.