FIGHTING MUSCULAR DYSTROPHOPY

RESEARCHERS DEVELOP PROMISING GENE THERAPY
Welcome to the inaugural issue of MU Medicine. I am delighted to share with you recent accomplishments of our researchers, physicians, students and alumni of the University of Missouri School of Medicine.

This is an exciting time in the history of our medical school. In June, we celebrated the opening of our clinical campus in Springfield. We still are one medical school, though we now have two top-quality campuses. With our partners at CoxHealth and Mercy Springfield, we are addressing the great need for more physicians in our state.

Construction is taking shape on Columbia’s campus, as you can see on page 13 or online at medicine.missouri.edu/morephysicians. The Patient-Centered Care Learning Center will open in August 2017, just west of J. Otto Lottes Health Sciences Library.

I know that MU is home to outstanding clinical, research and educational programs, and we want the rest of the country to realize that as well. Innovative research and programs such as our Division of Nephrology’s Annual Dialysis Conference are putting us on the map. Additionally, other medical schools across the country are adopting an original MU program. Our School of Medicine’s Legacy Teachers™ program lets students recognize patients and their families who made significant impressions on their future careers as physicians. The program, which was created 11 years ago, has expanded to other medical schools including the University of Kansas-Wichita, the University of North Carolina and Tufts University.

In October, we will welcome Brad Perkins, MD, ’85, to campus. A genomics expert and former CDC leader, he will present our school’s Milton D. Overholser Lecture during the 59th Annual Physicians Alumni Weekend. You can find more details about the school’s Milton D. Overholser Lecture during the 59th Annual Physicians Alumni Weekend. You can find more details about the scientific presentation and Homecoming festivities in the final pages of this magazine.

To learn more about events and accomplishments at the School of Medicine, visit our website, medicine.missouri.edu, or give us your feedback on our Facebook page and other social media sites. I look forward to hearing from you.

Patrick Delafontaine, MD
Hugh E. and Sarah D. Stephenson Dean
University of Missouri School of Medicine
Professor of Medicine and Medical Pharmacology and Physiology
DEVELOPING A GENE THERAPY TREATMENT

Muscular dystrophy is caused by gene mutations, and children with Duchenne have a specific gene mutation that interrupts the production of dystrophin, a protein that maintains muscle integrity. Without dystrophin, muscle cells become weak and eventually die.

Through gene therapy, Duan replaces the faulty genes with healthy ones. Dystrophin is tricky to replace, though, because of its large size. It is an incredibly long gene, containing nearly 10 times the amino acids of a typical human protein.

“Due to its size, it is impossible to deliver the entire gene with a gene therapy vector, which is the vehicle that carries the therapeutic gene to the correct site in the body,” Duan said. “Through previous research, we were able to develop a miniature version of this gene called a microgene. Now, the technology used to create the gene-therapy has been licensed by Solid GT.”

It has taken Duan’s team more than a decade to find a method to successfully distribute the microgene to all affected muscles in dogs. Like humans, dogs develop the disease naturally. Because of the similarity in size between dogs and small children, successfully treating dogs with Duchenne offers hope for treating the disease in humans.

In the study published last fall, Duan’s team showed how a common, harmless virus effectively carries the microgene to all muscles in the bodies of diseased dogs.

“The virus we are using is one of the most common viruses; it is also a virus that produces no symptoms in the human body, making this a safe way to spread the dystrophin gene throughout the body,” Duan said. “It’s important to treat Duchenne early before the disease does a lot of damage, as this therapy has the greatest impact at the early stages in life.”

The researchers injected the diseased dogs with the virus carrying the corrected microdystrophin gene when the dogs began displaying symptoms at about 2 to 3 months of age. Those same dogs, now 1 year old, continue to develop normally.

CONNECTIONS WITH FAMILIES

Duan said he is motivated by patients and their parents who are waiting for a cure.

“The parents want it to be cured tomorrow,” Duan said. “I’m so glad that, along the way, we have identified different problems and tried and solved problems, and now we’re so close. One day, we’re going to get to there.”

Bob McDonald, MD, ‘88, and his wife, Annette, met Duan after their youngest son, Mark, was diagnosed with Duchenne. Nearly a decade later, the McDonald family and Duan remain comrades in their endeavor to find successful treatments for Duchenne.

“Dr. Duan is beyond a prototypical scientist; he’s the ideal person you want working on any type of disease,” said Bob, who has served as a clinical faculty member at the medical school.

The McDonald’s eldest son, Thomas, begins his second year at MU’s medical school in the fall. He also hopes to make strides in muscular dystrophy research and spend time working in Duan’s lab as an undergraduate student and later as a full-time lab technician.

Duan said he is motivated by patients and their families. “Every detail is analyzed, and he’s very critical. He’s one of the most motivated people I’ve ever met, and the work he’s doing will make a huge difference for my brother and other kids with Duchenne.”

Duan consistently receives funding to pursue his research and recently received a five-year, $3 million award from the National Institutes of Health’s National Heart, Lung and Blood Institute. He also has received funding from the U.S. Department of Defense and private foundations, such as Jesse’s Journey and Hope for Javier.

“I’m so glad others realize what a fantastic researcher Duan is,” Bob McDonald said. “It’s very comforting to know he’s a good role model. He’s training a group of people that are going to go forward. His legacy will be great.”

One step closer to muscular dystrophy treatment

Gene therapy treats all muscles of dogs with Duchenne

For years, scientists have searched for a way to successfully treat Duchenne muscular dystrophy. Children with this disease face a future of rapidly weakening muscles and a shortened life expectancy. Duchenne muscular dystrophy is the most common form of muscular dystrophy, a group of diseases characterized by muscle weakness. It primarily affects boys, and, in most cases, symptoms appear between the ages of 2 and 5. As the disease progresses, many children lose the ability to walk. Eventually, muscles in the heart and lungs stop working. Duchenne offers hope for treating the disease in humans. Although a cure may still be years away, Duan is closer than ever to finding solutions to treat children with the disease.

DEVELOPING A GENE THERAPY TREATMENT

Muscular dystrophy is caused by gene mutations, and children with Duchenne have a specific gene mutation that interrupts the production of dystrophin, a protein that maintains muscle integrity. Without dystrophin, muscle cells become weak and eventually die.

Through gene therapy, Duan replaces the faulty genes with healthy ones. Dystrophin is tricky to replace, though, because of its large size. It is an incredibly long gene, containing nearly 10 times the amino acids of a typical human protein.

“Due to its size, it is impossible to deliver the entire gene with a gene therapy vector, which is the vehicle that carries the therapeutic gene to the correct site in the body,” Duan said. “Through previous research, we were able to develop a miniature version of this gene called a microgene. Now, the technology used to create the gene-therapy has been licensed by Solid GT.”

It has taken Duan’s team more than a decade to find a method to successfully distribute the microgene to all affected muscles in dogs. Like humans, dogs develop the disease naturally. Because of the similarity in size between dogs and small children, successfully treating dogs with Duchenne offers hope for treating the disease in humans.

In the study published last fall, Duan’s team showed how a common, harmless virus effectively carries the microgene to all muscles in the bodies of diseased dogs.

“The virus we are using is one of the most common viruses; it is also a virus that produces no symptoms in the human body, making this a safe way to spread the dystrophin gene throughout the body,” Duan said. “It’s important to treat Duchenne early before the disease does a lot of damage, as this therapy has the greatest impact at the early stages in life.”

The researchers injected the diseased dogs with the virus carrying the corrected microdystrophin gene when the dogs began displaying symptoms at about 2 to 3 months of age. Those same dogs, now 1 year old, continue to develop normally.

CONNECTIONS WITH FAMILIES

Duan said he is motivated by patients and their parents who are waiting for a cure.

“The parents want it to be cured tomorrow,” Duan said. “I’m so glad that, along the way, we have identified different problems and tried and solved problems, and now we’re so close. One day, we’re going to get to there.”

Bob McDonald, MD, ‘88, and his wife, Annette, met Duan after their youngest son, Mark, was diagnosed with Duchenne. Nearly a decade later, the McDonald family and Duan remain comrades in their endeavor to find successful treatments for Duchenne.

“Dr. Duan is beyond a prototypical scientist; he’s the ideal person you want working on any type of disease,” said Bob, who has served as a clinical faculty member at the medical school.

The McDonald’s eldest son, Thomas, begins his second year at MU’s medical school in the fall. He also hopes to make strides in muscular dystrophy research and spend time working in Duan’s lab as an undergraduate student and later as a full-time lab technician.

Duan said he is motivated by patients and their families. “Every detail is analyzed, and he’s very critical. He’s one of the most motivated people I’ve ever met, and the work he’s doing will make a huge difference for my brother and other kids with Duchenne.”

Duan consistently receives funding to pursue his research and recently received a five-year, $3 million award from the National Institutes of Health’s National Heart, Lung and Blood Institute. He also has received funding from the U.S. Department of Defense and private foundations, such as Jesse’s Journey and Hope for Javier.

“I’m so glad others realize what a fantastic researcher Duan is,” Bob McDonald said. “It’s very comforting to know he’s a good role model. He’s training a group of people that are going to go forward. His legacy will be great.”

One step closer to muscular dystrophy treatment

Gene therapy treats all muscles of dogs with Duchenne

For years, scientists have searched for a way to successfully treat Duchenne muscular dystrophy. Children with this disease face a future of rapidly weakening muscles and a shortened life expectancy. Duchenne muscular dystrophy is the most common form of muscular dystrophy, a group of diseases characterized by muscle weakness. It primarily affects boys, and, in most cases, symptoms appear between the ages of 2 and 5. As the disease progresses, many children lose the ability to walk. Eventually, muscles in the heart and lungs stop working.

In 2015, Duan’s team successfully treated dogs with Duchenne. This study, “Safe and Body-wide Muscle Transduction in Young Adult Duchenne Muscular Dystrophy Dogs with Adeno-associated Virus,” was published in the October 2015 issue of Human Molecular Genetics.

Duchenne muscular dystrophy is the most common form of muscular dystrophy, a group of diseases characterized by muscle weakness. It primarily affects boys, and, in most cases, symptoms appear between the ages of 2 and 5. As the disease progresses, many children lose the ability to walk. Eventually, muscles in the heart and lungs stop working.

In 2015, Duan's team successfully treated dogs with Duchenne. This study, “Safe and Body-wide Muscle Transduction in Young Adult Duchenne Muscular Dystrophy Dogs with Adeno-associated Virus,” was published in Human Molecular Genetics in October. The study, “Safe and Body-wide Muscle Transduction in Young Adult Duchenne Muscular Dystrophy Dogs with Adeno-associated Virus,” was published in the October issue of Human Molecular Genetics.
More research is needed to verify that HO-1 will prevent endothelial cell dysfunction with all antiviral medications. The study, “Heme Oxygenase-1-Derived Bilirubin Counteracts HIV-Induced Endothelial Cell Dysfunction,” was published in the May 2016 issue of Free Radical Biology and Medicine.

In a previous study, Higashi and Patrick Delafontaine, MD, the Hugh E. and Sarah D. Stephenson Dean of Medicine, examined the arteries of mice fed a high-fat diet for eight weeks. IGF-1 was administered to one group of mice. Researchers found that the arteries of mice with higher levels of IGF-1 had significantly less plaque than mice that did not receive the protein. Since the macrophage is a key player in the development of atherosclerosis, the researchers decided to investigate potential anti-atherosclerotic effects of Reid-1 in macrophages.

“Our current study is one of the first ever to examine a link between IGF-1 and macrophages in relation to vascular disease,” Delafontaine said. “We examined mice whose macrophages were unresponsive to IGF-1 and found that their arteries have more plaque buildup than normal mice. These results are consistent with the growing body of evidence that IGF-1 helps prevent plaque formation in the arteries.”

In future research, Higashi and Delafontaine plan to conduct the same study on larger animals before eventually studying human subjects. The researchers say studies on larger animals genetically closer to humans will be important for furthering the development of IGF-1-based therapeutic strategies.

In a study funded by the National Heart, Lung and Blood Institute, MU researchers identified an enzyme that may reduce the risk of cardiovascular disease caused by HIV infections.

“When protease inhibitors are used to treat HIV, endothelial cell function is compromised,” said William Durante, PhD, a professor of medicine, pharmacology and physiology at the MU School of Medicine and lead author of the study. “However, as we age, macrophages are not able to remove plaque from the arteries as easily. Our findings suggest that increasing Insulin-like Growth Factor-1 (IGF-1) in macrophages could be the basis for new approaches to remove clogged arteries and promote plaque stability in aging populations.”

Results of the study, funded by the NIH and American Heart Association, were published in Circulation in June 2016.

EXAMINING THE LINK BETWEEN HEART DISEASE, AGE

Researchers at MU have found that a protein, which is naturally found in high levels among adolescents, can help prevent arteries from clogging. “The body already works to remove plaque from arteries through certain types of white blood cells called macrophages,” said Yaukhe Higashi, PhD, assistant research professor in the Division of Cardiovascular Medicine and lead author of the study. “However, as we age, macrophages are not able to remove plaque from the arteries as easily. Our findings suggest that increasing Insulin-like Growth Factor-1 (IGF-1) in macrophages could be the basis for new approaches to remove clogged arteries and promote plaque stability in aging populations.”

Results of the study, funded by the NIH and American Heart Association, were published in Circulation in June 2016.

PHYSICIAN-SCIENTIST LEADS CANCER CENTER, SURGERY DEPARTMENT

Kevin Staveley-O’Carroll, MD, PhD, joined MU in September 2015 as chair of MU’s School of Medicine. Higashi and Patrick Delafontaine, MD, the Hugh E. and Sarah D. Stephenson Dean of Medicine, examined the arteries of mice fed a high-fat diet for eight weeks. IGF-1 was administered to one group of mice. Researchers found that the arteries of mice with higher levels of IGF-1 had significantly less plaque than mice that did not receive the protein. Since the macrophage is a key player in the development of atherosclerosis, the researchers decided to investigate potential anti-atherosclerotic effects of Reid-1 in macrophages.

“Our current study is one of the first ever to examine a link between IGF-1 and macrophages in relation to vascular disease,” Delafontaine said. “We examined mice whose macrophages were unresponsive to IGF-1 and found that their arteries have more plaque buildup than normal mice. These results are consistent with the growing body of evidence that IGF-1 helps prevent plaque formation in the arteries.”

In future research, Higashi and Delafontaine plan to conduct the same study on larger animals before eventually studying human subjects. The researchers say studies on larger animals genetically closer to humans will be important for furthering the development of IGF-1-based therapeutic strategies.

In a study funded by the National Heart, Lung and Blood Institute, MU researchers identified an enzyme that may reduce the risk of cardiovascular disease caused by HIV infections.

“When protease inhibitors are used to treat HIV, endothelial cell function is compromised,” said William Durante, PhD, a professor of medicine, pharmacology and physiology at the MU School of Medicine and lead author of the study. “The cells’ natural tendency to promote blood flow through the vessel is lost and they also become inflamed. These issues lead to plaque build-up within arteries and, ultimately, cardiovascular disease.”

Durante and his research team knew from previous studies that the enzyme heme oxygenase-1, or HO-1, offers protection against endothelial dysfunction. Using a cell-based model of cultured human endothelial cells, the researchers were able to increase the amount of the enzyme within the cells.
MATCH Illuminate Success

100% of MU students matched with a residency program

University of Missouri School of Medicine students simultaneously ripped open the sealed envelopes that contained their fates as physicians on March 18 during the school’s annual Match Day.

The school’s gallery was overwhelmed with hugs, high-fives and tears from families and friends as fourth-year medical students celebrated the start of a new chapter in their lives.

The 2016 class of medical students from the MU School of Medicine was highly sought; all 85 students received a residency program match. At 100 percent, the number of MU School of Medicine graduates matched with residencies is above the national average match rate of 94 percent.

The MU School of Medicine filled all its residency positions in the match. Many of those physicians – 30 percent of MU School of Medicine’s class of 2016 – will stay on the MU campus for their residency training.

Forty percent of the MU School of Medicine 2016 class will remain in Missouri. Additionally, 42 percent of this graduating class selected residency programs in high-need primary care fields, including internal medicine, pediatrics and family medicine.

Dean Inducted Into ACCA

Patrick Delafontaine, MD, Hugh E. and Sarah D. Stephenson Dean of the MU School of Medicine, has been inducted into the American Clinical and Climatological Association (ACCA). Active membership in this society is limited to 250 physicians. Delafontaine is the only ACCA member at MU and one of only eight members from Missouri.

“I am delighted to join this society of outstanding physicians and scientists,” said Delafontaine, who is also a professor of medicine and medical pharmacology and physiology at MU. “I welcome the opportunity to use my knowledge and research to advance the scientific understanding and compassionate care of human disease.”

Founded in 1884 over concerns about tuberculosis and the effect of climate on its treatment, the ACCA has since expanded its interests to cover all aspects of internal medicine, with an emphasis on the clinical study of disease. Members are selected on the basis of their leadership, excellence in their chosen field, demonstration of a high-level of integrity and professionalism, and their yearning to nurture a spirit of warmth, diversity and friendship.

EXAM SCORES ON THE RISE

In 1993, the University of Missouri School of Medicine implemented a curriculum that substantially reduced lectures in favor of patient-based learning. The curriculum emphasizes problem solving, self-directed learning and early clinical experiences rather than memorization. The curriculum’s success is illustrated in the following graphs of average exam scores for first-time takers on the United States Medical Licensing Exam (USMLE).

LEGACY TEACHERS™ PROGRAM EXPANDS

An original MU program now is being adopted by other medical schools. The MU School of Medicine’s Legacy Teachers™ program lets students recognize patients and their families who made significant impressions on their future careers as physicians.

The program, which was created 11 years ago, has expanded to other medical schools including the University of Kansas-Wichita, the University of North Carolina and Tufts University.

“We are delighted to see the Legacy Teachers program being adopted at other medical schools,” said Betsy Garrett, MD ’79, William C. Allen Professor in the Department of Family and Community Medicine. “Gratitude is such an important trait for physicians to have and express.”

It is important we give students the opportunity to thank patients who are among their best and most memorable teachers. We truly believe that this program, which we are proud to say is an MU original, could and should occur at every medical school in the country.”

Learn more about Legacy Teachers at medicine.missouri.edu/legacy.
Little did Karl Nolph, MD, and his team know when they started a symposium in 1980 that the event would turn into an annual conference bringing international attention and recognition to the University of Missouri School of Medicine.

With encouragement from the National Institutes of Health (NIH), Nolph’s team organized the first conference to educate health care professionals on the clinical and administrative aspects of planning, starting and maintaining a new therapy for patients with end stage kidney disease. Known as continuous ambulatory peritoneal dialysis (CAPD), today it is a common treatment. They organized the first National CAPD Conference in Kansas City, Missouri, as a way to educate centers about peritoneal dialysis.

“The first meeting was very successful and had about 350 attendees,” said Ramesh Khanna, MD, the Karl D. Nolph Chair of Nephrology and the chair of the Annual Dialysis Conference. “People came from more than 40 states and 11 countries to participate. The conference was so successful that we were urged to organize another one the next year.”

At the first meeting, Nolph stressed the need for a national registry of CAPD and announced that the NIH had agreed to sponsor a national directory, which he had agreed to sponsor a national directory, which he

“Without a doubt, the reputation of our Division of Nephrology and MU continues to grow as a result of this conference,” said Patrick Delafontaine, MD, the Hugh E. and Sarah D. Stephenson Dean of the MU School of Medicine. “Dr. Ramesh Khanna does an excellent job in gaining international exposure on the importance of dialysis.”

Throughout the years, the conference broadened its scope and reach. Instead of focusing on CAPD, health care professionals on the clinical and administrative aspects of planning, starting and maintaining a new therapy for patients with end stage kidney disease. Known as continuous ambulatory peritoneal dialysis (CAPD), today it is a common treatment. They organized the first National CAPD Conference in Kansas City, Missouri, as a way to educate centers about peritoneal dialysis.

Eventually the Annual Dialysis Conference, what is it known as today.

This exposure extends beyond the week-long conference through numerous publications, including Advances in Peritoneal Dialysis and the Journal of International Society for Hemodialysis. Khanna estimates that more than 1,700 proceeding papers have been published and consumed worldwide since the symposium’s inception.

“Without a doubt, the reputation of our Division of Nephrology and MU continues to grow as a result of this conference,” said Patrick Delafontaine, MD, the Hugh E. and Sarah D. Stephenson Dean of the MU School of Medicine. “Dr. Ramesh Khanna does an excellent job in gaining international exposure on the importance of dialysis.”

The Thompson Foundation, created by Bill and Nancy Thompson, has pledged $1 million to the University of Missouri School of Medicine to create the Thompson Center for Regenerative Orthopaedics.

“I am very lucky and blessed to be successful in a career that has generated wealth that I can do something with,” said Bill Thompson, BS ECE ’68, the retired chief executive officer of Pimco, a global investment management firm. “I know the deep value private philanthropy to do special things."

Investing in Mizou is not new for Bill and Nancy Thompson, BS HES ’67, of Irvine, California. In 2005, their $8.5 million gift helped establish the Thompson Center for Autism and Neurodevelopmental Disorders, now a national leader in the diagnosis and treatment of autism spectrum disorders.

The new orthopaedics center will be housed on the fourth floor of a new addition to the Missouri Orthopaedic Institute, which is currently under construction. Research into regenerative orthopaedics at MU includes the development of a better method to store donor tissue, and improved procedures for repairing torn knee ligaments and other joint injuries. These discoveries led to the creation of the Missouri BioJoint Center at the institute, drawing patients from around the globe for biological joint replacements.

The Thompson Foundation, created by Bill and Nancy Thompson, has pledged $1 million to the University of Missouri School of Medicine to create the Thompson Center for Regenerative Orthopaedics.

“I am very lucky and blessed to be successful in a career that has generated wealth that I can do something with,” said Bill Thompson, BS ECE ’68, the retired chief executive officer of Pimco, a global investment management firm. “I know the deep value private philanthropy to do special things."

Investing in Mizou is not new for Bill and Nancy Thompson, BS HES ’67, of Irvine, California. In 2005, their $8.5 million gift helped establish the Thompson Center for Autism and Neurodevelopmental Disorders, now a national leader in the diagnosis and treatment of autism spectrum disorders.

The new orthopaedics center will be housed on the fourth floor of a new addition to the Missouri Orthopaedic Institute, which is currently under construction. Research into regenerative orthopaedics at MU includes the development of a better method to store donor tissue, and improved procedures for repairing torn knee ligaments and other joint injuries. These discoveries led to the creation of the Missouri BioJoint Center at the institute, drawing patients from around the globe for biological joint replacements.

James Cook, DVM, PhD, the William and Kathryn Allen Distinguished Professor of Orthopaedic Surgery and director of the Orthopaedic Research Division at MU, said this gift will create a unique opportunity to provide world-class care for Missourians.

“It truly will be a one-of-a-kind laboratory right in the heart of the clinical orthopaedic center,” Cook said.

The Thompsons’ hope for the gift is to boost the scope and quality of care at the Missouri Orthopaedic Institute. James Stannard, MD, medical director of the Missouri Orthopaedic Institute, believes it will happen.

“This gift is a game-changer,” Stannard said. “We can go from very good to great. That’s an elite jump that only a very few can make.” By training at the new center, surgeons and researchers hope to spread the regenerative orthopaedic programs and technologies developed at MU’s medical school across the nation and around the globe to benefit millions of people.

Researchers at the new center will pursue discoveries and advances to help people with joint replacements resume family and work activities sooner and lower costs and improve access to health care.

“We cannot thank the Thompsons enough for their generosity and vision to support such life-changing research here at MU,” said Patrick Delafontaine, MD, dean of the MU School of Medicine. “Our faculty and students are doing amazing things at the Missouri Orthopaedic Institute and with regenerative orthopaedics in particular. This financial support will have a tremendous impact on health care and improving the quality of life for Missourians and people around the world.”
The University of Missouri School of Medicine is expanding its medical school class size from 96 to 128 students to address a critical shortage of physicians in Missouri and the nation. As part of the expansion, the School of Medicine, in partnership with CoxHealth and Mercy health systems, opened a second MU clinical campus in Springfield in February. Evans previously held a faculty appointment at the School of Medicine and has worked on the medical staff and served in administrative positions in all three health systems involved with the medical school expansion.

Evans said his strong relationships with and understanding of the partner organizations will help him in his new role. “I’ve had positive experiences with all three organizations and regard all of them highly,” Evans said. “I’m looking forward to building on existing relationships and working with CoxHealth, Mercy and MU to expand exceptional educational opportunities for future physicians.”

A lead clerkship coordinator, several support staff and associate clerkship directors have joined Evans on the Springfield team.

EVANS LEADS SPRINGFIELD CAMPUS

Andrew Evans, MD, was appointed associate dean and chief academic officer for the medical school’s Springfield clinical campus in February.

“The University of Missouri has a strong background in medical education and has trained more Missouri physicians than any other university,” Evans said. “The opportunity to bring medical education to the Springfield community is the exciting part for me.”

As associate dean for the Springfield clinical campus, Evans engages Columbia and Springfield leaders to provide strategic direction and vision. He will ensure that the educational programs in Springfield align with and support high-quality, effective patient-centered care.

Formerly a hospitalist at Mercy Clinic Springfield, Evans is board-certified in internal medicine. He is a fellow of the American College of Physicians and a senior fellow of the Society of Hospital Medicine. He received his medical degree from the University of Washington in Seattle and completed residency training in internal medicine at Baylor College of Medicine in Houston. He holds BA and MBA degrees from Drury University in Springfield.

Evans previously held a faculty appointment at the School of Medicine and has worked on the medical staff and served in administrative positions in all three health systems involved with the medical school expansion.

Evans said his strong relationships with and understanding of the partner organizations will help him in his new role.

“I’ve had positive experiences with all three organizations and regard all of them highly,” Evans said. “I’m looking forward to building on existing relationships and working with CoxHealth, Mercy and MU to expand exceptional educational opportunities for future physicians.”

A lead clerkship coordinator, several support staff and associate clerkship directors have joined Evans on the Springfield team.

NEW BUILDING, NEW STUDENTS

The School of Medicine hosted an open house June 13, 2016, for its new location at 1845 South National in Springfield. The leased building houses administrative offices and a testing site. Move-in began in late May and should be completed by the end of the summer.

Nine third-year medical students compose the Springfield clinical campus’ first class. They began their studies in mid-June. Six of the students have hometowns in Missouri. The other students are from Iowa, Kansas and Washington.

“Students volunteer to study in Springfield because they view it as an opportunity to be exposed to high-quality practice in a community setting while working one-on-one with attending physicians,” Evans said.

The students will spend their third and fourth years of medical school in Springfield. Eleven students will join the Springfield campus in spring 2017. Eventually, 24 third- and fourth-year students will study in Springfield each school year.

DEVELOPING EXCEPTIONAL CLINICAL FACULTY

One of Evans’ first duties included attending a month-long conference in Palo Alto, California, at Stanford’s Faculty Development Center for Medical Teachers.

Shelby Han, MD, a physician at CoxHealth, and Benji Garrett, MD ’79, director of medical student education at MU, also attended. The three physicians now will train other clinical faculty members to become more effective and engaging medical educators.

A faculty training session April 29 in Springfield brought together physicians from Mercy, Cox and MU for the first time — together, these individuals collectively form the Springfield clinical campus faculty.

The faculty members in Springfield have similarities to those in Columbia, said Weldon Webb, associate dean for the Springfield clinical campus implementation.

“They’re busy practicing physicians who also teach,” Webb said. “It’s one school, two locations. One faculty, two locations.”

EVANS LEADS SPRINGFIELD CAMPUS

Andrew Evans, MD, was appointed associate dean and chief academic officer for the medical school’s Springfield clinical campus in February.

“The University of Missouri has a strong background in medical education and has trained more Missouri physicians than any other university,” Evans said. “The opportunity to bring medical education to the Springfield community is the exciting part for me.”

As associate dean for the Springfield clinical campus, Evans engages Columbia and Springfield leaders to provide strategic direction and vision. He will ensure that the educational programs in Springfield align with and support high-quality, effective patient-centered care.

Formerly a hospitalist at Mercy Clinic Springfield, Evans is board-certified in internal medicine. He is a fellow of the American College of Physicians and...
When Brad Perkins, MD ’85, applied to medical school in 1981, he imagined a world where medicine and artificial intelligence were intertwined. His father’s work as a flight engineer and his own pre-medical lab work with bacterial meningitis at the University of Missouri fostered that vision.

“But I didn’t know then that it would take quite this long,” Perkins said with a laugh.

Perkins is now the chief medical officer of a startup that has an estimated 20,000 human genomes in its growing database, which it endeavors to transform into a range of services to improve health. He will present the Medicine Overholser Lecture, “Hacking the Software for Life,” Friday, Oct. 21, 2016, during the 59th Annual Physicians Alumni Weekend at the MU School of Medicine.

In his leadership position with Human Longevity Inc. (HLI), Perkins oversees clinical and therapeutic operations for the company, which includes collecting and analyzing phenotypic data and stem cell therapeutics. The company has raised more than $300 million from investors.

Perkins said his passion for genomics comes directly from his background in bacteriology.

“The first revolution in genomics occurred in bacteria, and I was fortunate enough to be a witness to that early on,” Perkins said.

For more than 20 years, Perkins led high-profile programs at the Centers for Disease Control and Prevention (CDC). These programs included field and lab investigations into the United States anthrax attacks in 2001.

“That was the first time the CDC used whole genome sequencing in an investigation,” Perkins said. “Now, we are seeing broad use of that in medical and public health investigation.”

Perkins began his career at the CDC in 1989 after completing residency training in internal medicine at the Baylor College of Medicine in Houston. While at the CDC, he published more than 120 peer-reviewed publications and book chapters.

He first joined and then led the Meningitis and Special Pathogens Branch where he investigated global bacterial disease epidemics. He co-discovered the bacteria that causes cat scratch diseases and conducted translational research leading to development of several new bacterial meningitis and pneumonia vaccines, now the standard of vaccine therapy globally. In 2005, he was appointed CDC’s chief strategy and innovation officer, a position in which he managed 15,000 employees with offices in more than 50 countries. Working closely with the CDC director, he built a $2 billion emergency response capability and positioned the improvement of population health as a focus of the health care reform movement within the White House administration at that time.

Following his career at the CDC, Perkins served as executive vice president for strategy and innovation, and chief transformation officer at Vanguard Health Systems. The multi-state, for-profit, integrated health services provider employed nearly 46,000 individuals. He helped transform Vanguard from a traditional fee-for-service health care model, to a population health model. During his tenure, Vanguard’s revenues grew from approximately $2.6 billion to nearly $6.5 billion.

In addition to his medical degree, Perkins received a bachelor’s degree in microbiology from MU and an MBA from Emory University in Atlanta.

“Then that was the first time the CDC used whole genome sequencing in an investigation,” Perkins said. “Now, we are seeing broad use of that in medical and public health investigation.”

Perkins began his career at the CDC in 1989 after completing residency training in internal medicine at the Baylor College of Medicine in Houston. While at the CDC, he published more than 120 peer-reviewed publications and book chapters.

He first joined and then led the Meningitis and Special Pathogens Branch where he investigated global bacterial disease epidemics. He co-discovered the bacteria that causes cat scratch diseases and conducted translational research leading to development of several new bacterial meningitis and pneumonia vaccines, now the standard of vaccine therapy globally. In 2005, he was appointed CDC’s chief strategy and innovation officer, a position in which he managed 15,000 employees with offices in more than 50 countries. Working closely with the CDC director, he built a $2 billion emergency response capability and positioned the improvement of population health as a focus of the health care reform movement within the White House administration at that time.

Following his career at the CDC, Perkins served as executive vice president for strategy and innovation, and chief transformation officer at Vanguard Health Systems. The multi-state, for-profit, integrated health services provider employed nearly 46,000 individuals. He helped transform Vanguard from a traditional fee-for-service health care model, to a population health model. During his tenure, Vanguard’s revenues grew from approximately $2.6 billion to nearly $6.5 billion.

In addition to his medical degree, Perkins received a bachelor’s degree in microbiology from MU and an MBA from Emory University in Atlanta.

THOMAS FISCHER, MD, BS MED ’57, one of the first graduates of the medical school’s four-year program, died Jan. 20, 2016, in Hannibal, Missouri.

JOHN HOLCOMB, MD ’60, family medicine physician, died March 24, 2016, in Cape Girardeau, Missouri.

NOEL LAWSON, MD, professor emeritus of anesthesiology at the MU School of Medicine and former chair of the Department of Anesthesiology, died March 19, 2016, in Columbia, Missouri.

REBECCA LUECKENHOFF, MD ’82, family medicine physician, died May 27, 2016, in Jefferson City, Missouri.

GREGORY MUNSON, MD ’75, orthopaedic surgeon, died May 30, 2016, in Orlando, Florida.

BONNIE RANNEY, MD ’84, family medicine physician, died Dec. 13, 2015, near Rolla, Missouri.

DAVID SCHERR, MD ’59, retired orthopaedic surgeon, died June 3, 2016, in Atlanta.

WILLIAM TRUMBOWER, MD ’71, obstetrician-gynecologist, died March 4, 2016, in Columbus.

IN MEMORIAM

ALUMNA SELECTED FOR FELLOWSHIP

Laine Young-Walker, MD ’97, an associate professor of psychiatry and chief of the Division of Child and Adolescent Psychiatry at MU, has been accepted as a fellow in the 2016-2017 class of the Hedwig van Ameringen Executive Leadership in Academic Medicine (ELAM) Program for Women through Drexel University’s College of Medicine.

The ELAM program is an intensive year-long fellowship for female faculty members working in medicine, dentistry and public health. The program provides fellows with extensive coaching, networking and mentoring opportunities.

In addition to her medical degree, Young-Walker completed residency training in psychiatry and fellowship training in child and adolescent psychiatry at MU. She now serves as the training director for MU’s child and adolescent psychiatry fellowship program.

CLASS NOTES COMING SOON

Tell us about your personal and professional activities, and we’ll share the news with your former classmates. Visit medicine.missouri.edu/alumni and click the “Share News” link or contact Laura Gerding, director of alumni affairs, at 573-882-6949 or gerdingla@missouri.edu.

FRIDAY, OCT. 21
• Scientific Program, School of Medicine
• Dean’s Address, School of Medicine
• Alumni Banquet, Country Club of Missouri

SATURDAY, OCT. 22
• Alumni Tailgate in Lot A next to Memorial Stadium (Founders Lot)
• MU Tigers vs. Middle Tennessee State Blue Raiders in MU’s Homecoming Game

REGISTER ONLINE: www.mizzou.com/PAW16
For more information, please contact Laura Gerding, director of alumni affairs, at gerdingla@missouri.edu or call 573-882-5021.