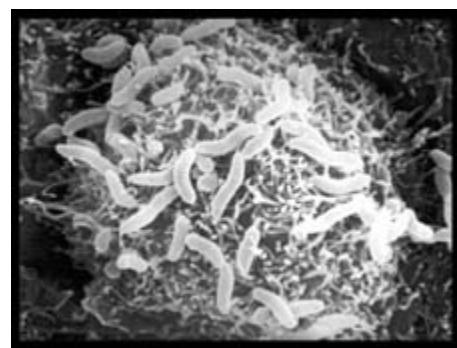


Research Statement


Enteric pathogenesis, immunology, and vaccine development; epitopes of cholera enterotoxins and related enterotoxins from *Escherichia coli*, genetically-engineered chimeras, and synthetic peptides; *Vibrio cholerae* adherence mechanisms and iron-regulated membrane proteins; bacterial zinc-containing metalloproteases; iron and bacterial-host interactions; antimicrobial activity of human and bovine milk; colonial morphology (phase variation) in cholerae vibrios; choleraeophage and choleraeins; *Burkholderia (Pseudomonas) pseudomallei*.

Dr. Finkelstein's laboratory made major contributions to the understanding of the pathogenesis of cholera, including the first isolation and characterization of the cholera enterotoxin (CT), identification of *Vibrio cholerae* antigens and adhesive mechanisms, and development and evaluation of cholera vaccines. He has also isolated and characterized CT-related heat-labile enterotoxins (LTs) from *Escherichia coli* and developed rapid procedures for identifying LT-producing *E. coli* colonies. Dr. Finkelstein's group pioneered studies on the role of iron in virulence of several microbial pathogens, including the gonococcus, and produced the first evidence that *V. cholerae* grown *in vivo* express iron-regulated membrane proteins which are not expressed under iron-replete conditions *in vitro*. His laboratory has studied virulence mechanisms in *V. cholerae*, common and specific epitopes in the CT-related enterotoxins, antibacterial factors in human and bovine milk, and has recently cloned and sequenced the HA/protease, a zinc metalloprotease which is a putative virulence factor of *V. cholerae*. By genetic substitutions in the A subunit of CT, his laboratory created CT analogs which are not toxic and re-inserted them in *V. cholerae* as live vaccine candidates. He has most recently been involved in studies on colonial opacity phase variation in cholerae vibrios (including the recently described O139 serogroup); choleraeophage; cholera vibrio population dynamics; and choleraeins (bacteriocins from *V. cholerae*)

Colonies of *Vibrio cholerae* of font varying opacity (increasing from top right, left bottom right) pseudocoloured to accentuate differences in gray-scale intensity. Of varying opacity (increasing from top left to top right, to bottom left to bottom right) pseudocoloured to accentuate differences in grey-scale intensity. Picture supplied by Richard A. Finkelstein,

Mary B.-Finkelstein, Dilip K. Sengupta, C. Michael Stanley and Thomas E. Phillips, University of Missouri-Columbia, MO, USA, and William J. Page, University of Alberta, Alberta, Canada. 1996. *Microbiol.* 142:213-448. (cover picture)

Adherence of *Vibrio cholerae* El Tor biotype strain C7258 to monolayers of HT29-18N2 cells at 1 h. *V. cholerae* organisms adhere in clusters

at hot spots scattered across the apical surface of the goblet cell monolayers as seen here by scanning electron microscopy. (Magnification ca 6200x)