Steps in Transforming the Missouri Cancer Registry (MCR) from an Incidence Registry to a Survival Registry:

- Estimate Female Breast Cancer Burden in Missouri Senatorial Districts
- Improve Visualization of the Obtained Results Using Data Visualization Software
- Assess the Usability of the Missouri Cancer Registry and Research Center’s (MCR-ARC’s) Published Interactive Maps and Profile Reports

By
Awatef Ben Ramadan
June 20th, 2017
My Dissertation’s Backbone

• Estimate Female Breast Cancer Burden in Missouri Senatorial Districts and Improve Visualization of the Obtained Results Using Data Visualization Software
 • Estimate and Visualize Female Breast Cancer Incidence Rates in Missouri Senatorial Districts in Interactive Mapping Formats, 2008-2012
 • Estimated Female Breast Cancer Mortality-to-Incidence Ratio (MIR) of the Counties and the Senatorial Districts Grouped to County Boundaries (SDGCs) in Missouri, 2008 – 2012
 • Estimate Female Breast Cancer Survival Data in Missouri Senatorial Districts and Improve Visualization of the Obtained Results Using Interactive Mapping Reports, 2004 – 2010
My Dissertation’s Backbone

• Assess the usability of the Missouri Cancer Registry and Research Center (MCR-ARC)’s Published interactive maps and profile reports:
 • Geographic Information Systems: Usability, Perception, and Preferences of Public Health Professionals
 • Usability Assessment of the Missouri Cancer Registry’s Published Interactive Mapping Reports: Round one
 • Usability Assessment of the Missouri Cancer Registry’s Published Interactive Mapping Reports: Round two
How the Dissertation Projects Are Related?

- The projects are methodologically different, but the projects’ outcomes are very connected.
- The projects shared the same mission and vision towards FBC in Missouri.
- We measured the FBC burden in Missouri and visualized all the results, using a specific methodology and technology.
How the Dissertation Projects Are Related?

• In order to make the MCR’s reports very informative and understandable by the reports’ potential users:
 ▪ These reports should undergo extensive usability assessment and evaluation using pilot samples of those actual users
How the Dissertation Projects Are Related?

• A scoping review was written to assess the preferences and perspectives of the reports’ actual users using previous GIS usability literature for the years from 2000 to 2016
How the Dissertation Projects Are Related?

• By conducting the tow round usability study and the review:
 • We have comprehensive ideas and hints on how we could improve the published MCR maps’ usability
 • We could expect the perception and the predilections of the reports’ actual users.
Usability Assessment of the Missouri Cancer Registry’s Published Interactive Mapping Reports: Round one
Background

• Mapping reports offer an alternative to standard data tables in presenting health-related data

 – However, some users may experience difficulty interpreting information in spatial reports
Background

• MCR-ARC has produced interactive reports using a specific software for years

• These reports have never been tested for usability
MCR-ARC Mapping Reports
MCR-ARC Mapping Reports

Choose Indicator 1
- County
- 332.6 - 414.7
- 414.8 - 437.2
- 437.3 - 455.7
- 455.8 - 478.3
- 478.4 - 530.9
- Hospitals (April 2011)
- Cities
- Towns & villages
- CDPs
- BRFSS 2007 region
- Missouri outline
- World topographic map

Choose Indicator 2
- County
- 175.5 - 221.2
- 221.3 - 241.6
- 241.7 - 256.5
- 256.6 - 269.1
- 269.2 - 316.7
- Hospitals (April 2011)
- Cities
- Towns & villages
- CDPs
- BRFSS 2007 region
- Missouri outline
- World topographic map

Help/Print/etc.
See Area Profile
Plot | Tabular

Correlation (r) = 0.62, R-squared = 0.38,
Regression Equation: y = 45.09 + 0.45x

Female Breast, 40+ (15 Years: 1998-2012)

Indicator 1: Cancer Incidence, Age-Adjusted Rates
All Sites
15 Years: 1990-2012
Indicator 2: Cancer Incidence, Age-Adjusted Rates
Female Breast, 40+
15 Years: 1990-2012

Sources Feedback
Study Aims

• Assess the usability of MCR-ARC’s published InstantAtlas reports

• Assess if participants' performance is affected by their demographic characteristics, education, experience in using GIS tools and work type/job title
Methods

1. Study Design:

- Mixed methodology approach
- Per participants, the researchers conducted:
 - A pretest questionnaire,
 - A multi-task usability test, and
 - System Usability Scale (SUS)
Methods

1.a. The pretest questionnaire

• Includes questions on every participant’s:
 – Demographics,
 – Work type, and
 – Experience in healthcare field
 – Experience with GIS tools
Methods

1.b. Multi-Task usability test

• We developed this multi-task scenario based on the expected functionality of the tested maps
• The tasks were in the same order for all participants
Methods

1.c. The System Usability Scale (SUS)

• Is an industrialized and simple ten-item scale to measure the participants’ satisfaction

• The SUS score range between 0 and 100
Methods

2. Participants:

• Recruiting emails were sent to:
 – Faculty in the MPH program at MU
 – Faculty & staff in the HMI Dept
 – We ran the trial on the first 7 participants who responded

• Convenience sampling
3. Study Procedure:

• A computer laptop was used to conduct the trial

• Specific Microsoft Windows software was used to audio-video record the laptop screen
Results: Participant demographics

- Number participants: 1 male, 6 females
- Age: 31-68 years (Mean=49.57, Median=49.14)
- Work: 3 - MPH program; 4 - HMI Dept.
- Education: 4 PhD in healthcare-related field, 3 MPH or MHA/MSHI
Results: Participants’ experience

• Years in healthcare ranged from 3 - 38 years (Mean = 17.75 years, Median = 13 years)

• Experience in using GIS tools ranged from a few months - 15 years (Mean = 5.5 years, Median = 2 years)
Results – Task completion rate by participant

Graph 1: Task Completion Rate for All Tasks per Participant

Effectiveness = \# of tasks successfully completed \times 100

Total \# of tasks undertaken
Results – Completion rate by task for all participants

Graph 2: Task Completion Rate by Task for All Participants

Effectiveness = \# of tasks successfully completed \times 100

Total \# of tasks undertaken
Results: Time-based Efficiency

Graph 3: Time-based Efficiency (TBE) per Task

Mean = 0.08 goals/second Median = 0.05 goals/seconds
Results: User Satisfaction

SUS Scores of the Study's Participants

SUS Scores

Study Participants

1 2 3 4 5 6 7
Results

Demographic and Previous Expertise Factors of the Study Participants Versus the trial’s TCR and SUS Scores

<table>
<thead>
<tr>
<th>The Studied Factors</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education Level vs TCR</td>
<td>.91</td>
</tr>
<tr>
<td>Education Level vs SUS score</td>
<td>.82</td>
</tr>
<tr>
<td>Work Type vs TCR</td>
<td>.75</td>
</tr>
<tr>
<td>Previous Experience in Healthcare Field vs TCR</td>
<td>.70</td>
</tr>
<tr>
<td>Previous Experience in GIS use vs TCR</td>
<td>.03</td>
</tr>
<tr>
<td>Previous Experience in Healthcare Field vs SUS</td>
<td>.82</td>
</tr>
<tr>
<td>Previous Experience in GIS use vs SUS Score</td>
<td>.17</td>
</tr>
</tbody>
</table>
Results

Correlation Between the Studied Usability Elements

<table>
<thead>
<tr>
<th>The Studied Factors</th>
<th>Correlation Coefficient</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCR per participant vs SUS Score</td>
<td>.70</td>
<td>.08</td>
</tr>
<tr>
<td>TCR per task vs TBE</td>
<td>.50</td>
<td>.25</td>
</tr>
<tr>
<td>TCR per task vs ORE</td>
<td>.92</td>
<td>.003</td>
</tr>
<tr>
<td>Efficiency per participant* vs SUS Score</td>
<td>.70</td>
<td>.07</td>
</tr>
</tbody>
</table>
Discussion & Conclusion

• The tested maps’ effectiveness outcomes was better than the efficiency and satisfaction outcomes

• The study discovered that the effectiveness and efficiency metrics were related to the given tasks’ degree of complexity
Discussion & Conclusion

• The ranked easier tasks were accomplished effectively and efficiently easier than the ranked complicated tasks

• The user satisfaction scores assessed by the SUS scale for these users were very poor and excellent school grades (A-F) with average of D grade
Discussion & Conclusion

• No significant statistical relationship between the participants’ performance and all of these factors: Education level, work type, the experience in public health, and SUS level
Discussion & Conclusion

• Significant statistical relationship between the participants’ performance on the study trial and the experience in using GIS tools factor
Strengths of the Study

• First usability study to assess usability of published MCR-ARC InstantAtlas mapping reports

• Results might be generalized to assess usability & functionality of all MCR-ARC’s mapping reports

 – possibly generalizable to other GIS health-related reports and tools
Recommendations

• Conduct another usability study with health professionals from the cancer surveillance community

• Refine & update tested maps to overcome identified usability issues
Recommendations

• Conduct usability testing studies before releasing maps

• Consider using advanced usability software in analyzing audio-video records in future
Future Research

• Conduct a second-round usability study
 – Evaluate & assess
 • MCR-ARC’s published mapping reports using public health practitioners & cancer policy makers
 • Unpublished MO senate district mapping reports using the same methodology
 – Use advanced usability software in analyzing audio-video records
References

Acknowledgement

Special thanks to:

- **Jeannette Jackson-Thompson, MSPH, PHD (Co-Author)**
 - Director, MCR-ARC
 - Research Associate Professor, HMI
 - Core Faculty, MU II

- **Chester Schmaltz, PhD (Co-Author)**
 - Senior Statistician, MCR-ARC
 - Adjunct faculty, HMI

- **MCR Staff and contractors**
Acknowledgement

- MCR data collection activities are supported in part by:
 - A cooperative agreement between the Centers for Disease Control and Prevention (CDC) and the Missouri Department of Health and Senior Services (DHSS) (#U58/DP003924-05);
 and
 - A surveillance contract between DHSS and the University of Missouri
Thank you

Questions?