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BioJoint Story

Keiichi Kuroki1, Aaron M. Stoker1, James P. Stannard1,
Chantelle C. Bozynski1, Cristi R. Cook1, Ferris M. Pfeiffer1,
and James L. Cook1

Abstract
Because articular cartilage has very limited healing potential, most symptomatic cartilage injuries eventually result in end-stage
osteoarthritis and are treated with artificial joint replacement. Our interdisciplinary, comparative orthopedic research performed
by a team of DVMs, MDs, engineers, and basic scientists has yielded marked progress toward effective biologic joint restoration
strategies by bringing bench-side ideas to fruition in bedside applications in both canine and human patients. This mini-review
summarizes the progress of biologic joint restoration strategies at our center.
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Articular cartilage has very limited intrinsic healing potential

(Huey, Hu, and Athanasiou 2012), and its damage often leads

to the development of osteoarthritis, the most common form of

arthritis and a leading cause of disability throughout the world

(Neogi 2013). Currently, there is no cure for osteoarthritis, and

medical treatments are mainly focused on decreasing inflam-

mation and pain. Surgical intervention is often used in an

attempt to treat irrevocably damaged articular cartilage by

removal (debridement), repair, and/or replacement. Total joint

replacement (TJR) using synthetic prosthetic implants is often

considered the definitive treatment option for patients with

extensive articular cartilage damage. Although TJR surgery

is appropriately considered to be one of the greatest surgical

advances in recent times based on consistent improvements in

patients’ pain, function, and quality of life, complications, mor-

bidity, and revisions rates are still significant such that TJR is

ideally reserved for patients older than 65 years and not

involved in high-impact activities (Lachiewicz and Soileau

2009; Ritter and Meneghini 2010; Swanson, Schmalzried, and

Dorey 2009).

Microfracture and subchondral drilling are common proce-

dures aimed at encouraging cartilage repair by marrow stimu-

lation (McNickle, Provencher, and Cole 2008). Marrow

stimulation allows bone marrow cells to reach to the avascular

cartilage lesion to mount a healing response; however, unlike

hyaline cartilage, the resultant repaired cartilage is type I

collagen-rich fibrocartilage and deteriorates over time in

response to the mechanical loading of the joint (Kaul et al.

2012; Murawski, Foo, and Kennedy 2010). Autologous chon-

drocyte implantation (ACI) techniques use the patient’s own

cells with or without scaffolds to enhance repair in cartilage

defects and can yield more robust repair tissue than marrow

stimulation and good clinical outcomes (Biant et al. 2014;

Brittberg et al. 1994; Peterson et al. 2002). However, ACI

requires 2 surgeries: harvest of the patient’s chondrocytes and

implantation of culture-expanded chondrocytes. The resultant

repair tissue is predominantly fibrocartilage (Gikas et al. 2009;

Roberts et al. 2009), the procedure is costly, and graft failure is

not an uncommon complication (Gikas et al. 2009; Niemeyer

et al. 2008).

Regeneration of articular cartilage using tissue engineering

strategies has demonstrated promising outcomes in animals.

Large tissue-engineered constructs with hyaline cartilage archi-

tecture and native biomechanical properties have been success-

fully elaborated in vitro (Bian et al. 2010; Roach et al. 2015).

Our collaborative studies with Professor Hung at Columbia

University have demonstrated that agarose constructs seeded

with canine chondrocytes and subjected to dynamic deforma-

tion produce tissue-engineered cartilage with material proper-

ties and biochemical composition matching native canine
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hyaline cartilage (Bian et al. 2010). After safety and efficacy

testing in preclinical animal models (Ng et al. 2010), 6 client-

owned canine patients with symptomatic stifle (knee) joint

articular cartilage defects were treated with agarose-based

tissue-engineered osteochondral constructs with informed cli-

ent consent and have shown good to excellent long-term (4–8

years) clinical outcomes (unpublished data). Cell-free scaffolds

aimed at homing endogenous host cells for self-repair is

another attractive articular cartilage tissue engineering

approach with evidence for applicability. In collaboration with

Professor Ma at Columbia University, our research demon-

strated that the entire articular surface of rabbit humeral heads

can be restored by homing host cells to a patient-specific scaf-

fold using a transforming growth factor (TGF) beta3-infused

polycaprolactone with hydroxyapatite bioscaffold (Lee et al.

2010). Although these and other articular cartilage tissue engi-

neering strategies hold great potential for improving cartilage

regeneration and repair treatments, these technologies are not

yet approved for use in human patients, and the regulatory and

financial hurdles to their clinical application are daunting.

Osteochondral graft transfer and transplantation are the only

currently available methods for restoring articular defects with

hyaline cartilage. Osteochondral autograft is a viable option for

treating smaller (<2 cm2) articular defects, primarily in knees,

without risk of disease transmission or immune response.

Reported clinical success rates range between 72% and 92%
in long-term follow-up studies (Hangody et al. 2008; Pareek

et al. 2016). However, osteochondral autograft is associated

with donor site morbidity and is limited by defect size and

location (Camp, Stuart, and Krych 2014). Osteochondral allo-

graft (OCA) transplantation is another approved option for

restoring articular defects with hyaline articular cartilage that

is far less limited by lesion size and location. The first clinical

OCA transplantation was reported more than 100 years ago

(Lexer 1908), and it has been used clinically for more than

40 years since its modern descriptions by Gross et al. (1975)

and Meyers, Akeson, and Convery 1989. OCA transplantation

has been associated with 88% return to sport (Krych, Robert-

son, and Williams 2012) and greater than 80% 10-year graft

survivorship for treatment of large femoral condyle lesions

(Aubin et al. 2001; Gross, Shasha, and Aubin 2005). However,

the use of OCAs in clinical practice is limited by availability

(quantity) of acceptable donor tissues for eligible patients. One

of the major limitations to availability is the capability of tissue

banks to preserve OCAs with essential chondrocyte viability

(quality) for sufficient time after procurement to complete

mandatory disease screening protocols and identify, match, and

place the tissue at a center for transplantation into an eligible

patient (Capeci et al. 2013; Demange and Gomoll 2012). Stud-

ies have shown that human OCAs stored at 4�C using the

current standard of care (SOC) method at tissue banks for more

than 14 days undergo significant decrease in chondrocyte via-

bility such that the majority of grafts fall below the minimum

essential chondrocyte viability level (70% of day 0 viable

chondrocyte density [VCD]) by day 28 after procurement

(Allen et al. 2005; Ball et al. 2004; S. K. Williams et al.

2003). Data from our laboratory revealed that mean chondro-

cyte viability in SOC OCAs (n¼ 24, storage days ranging from

16 to 21 days) obtained from 2 tissue banks and designated for

transplantation into patients was only 62% (unpublished data).

Clinical data from 75 patients who underwent OCA transplan-

tation at our center for treatment of large (>2 cm2) articular

defects of the femoral condyle showed that graft storage of

>28 days at 4�C prior to implantation was associated with a

significantly and 2.6 times lower likelihood of a successful

outcome (Nuelle et al. 2017), which matches data from others

(LaPrade et al. 2009). The other major factors to alter clinical

outcomes after OCA transplantation include patients’ preo-

perative activity levels, body mass index (Nuelle et al. 2017),

and surgical techniques for graft creation and implantation.

Therefore, our team of orthopedic clinicians and scientists

designed and implemented a comparative translational

research approach to address quantity, quality, and technique

limitations for successful OCA transplantation in canine and

human patients.

Materials and Methods

All procedures were performed under institutional Animal

Care and Use Committee approvals (8235, 8236, and 8285) for

canine studies and institutional review board (IRB) approvals

(2003053, 2002628, and 2005936) for human studies. As a

critical step toward improving maintenance of essential chon-

drocyte viability of OCAs during preservation, a series of

experiments were performed using medial and lateral femoral

condyles aseptically harvested from stifle (knee) joints of adult

canine cadavers within 4 hr of euthanasia performed for unre-

lated reasons (Garrity et al. 2012; A. Stoker et al. 2012; A. M.

Stoker et al. 2011). The femoral condyles were either used as

time 0 (at harvest) controls or randomly assigned to one of

more than 40 different combinations of media, temperature,

and container characteristics to evaluate the effects of preser-

vation methods for extending the duration of OCA

preservation.

After optimizing temperature, media, and container charac-

teristics for OCA quality during extended preservation (Garrity

et al. 2012; A. Stoker et al. 2012; A. M. Stoker et al. 2011),

functional outcomes of OCAs were evaluated using a preclini-

cal canine model (Cook et al. 2014, 2016). Then, the effective-

ness of our novel protocol to maintain sufficient chondrocyte

viability, extracellular matrix composition, and material prop-

erties was evaluated using human femoral condyle OCAs (A.

M. Stoker, Stannard, et al. 2017).

For all experiments, chondrocyte viability was determined

using Calcein AM (Invitrogen, Carlsbad, CA) for the live cell

stain and either ethidium homodimer-1 (Invitrogen, Carlsbad,

CA) or SYTOX Blue (Invitrogen, Carlsbad, CA) for visualiz-

ing dead cells as described elsewhere (Cook et al. 2014, 2016;

Garrity et al. 2012; A. M. Stoker, Stannard, et al. 2017; A.

Stoker et al. 2012). In addition, histologic integrity of OCAs

was evaluated using the Osteoarthritis Research Society Inter-

national (OARSI) system (Cook, Kuroki, et al. 2010). For
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histological processing, tissues were fixed in 10% buffered

formalin fixative for 48 hr and decalcified in 10% EDTA solu-

tion. Furthermore, biochemical evaluation of extracellular

matrix composition of OCAs was assessed using dimethyl-

methylene blue assay (DMMB) for glycosaminoglycan (Farn-

dale, Buttle, and Barrett 1986) and hydroxyproline assay for

collagen (Reddy and Enwemeka 1996), and biomechanical

properties including dynamic modules and instantaneous tissue

modules of OCAs were assessed as described previously (Cook

et al. 2016; Garrity et al. 2012). In the clinical study, outcomes

were assessed by using multiple patient-reported measures

including Visual Analog Scale for pain (VAS pain), Interna-

tional Knee Documentation Committee (IKDC; Irrgang et al.

2001), Single Assessment Numerical Evaluation (SANE; Win-

terstein et al. 2013), Tegner (Tegner and Lysholm 1985), and

Patient-Reported Outcomes Measurement Information System

(PROMIS) Mobility (Kratz et al. 2013).

Results

In vitro study using canine femoral condyle OCAs (n ¼ 45)

conducted by Garrity et al. (2012) showed that chondrocyte

viability in OCAs was well maintained after 28 and 56 days

storage at 37�C in a serum-free media named Media 1. This

study also showed that an anti-inflammatory and chondrogenic

media named Media 2 was not a good preservation media with

mean OCA viability markedly dropped down after 28 days.

Simultaneously, A. M. Stoker et al. (2011) demonstrated that

culture canine femoral condyles (n ¼ 5) preserved at 37�C in a

proprietary media named Media 3 maintained chondrocyte via-

bility. A subsequent study conducted by A. Stoker et al. (2012)

demonstrated that nearly day 0 chondrocyte viability (n ¼ 7)

can be maintained for up to 63 days when canine femoral

condyle OCAs are stored at room temperature (*25�C) in a

proprietary container named “C” with Media 3 (n ¼ 8). The

canine OCA preservation optimization in vitro studies data are

summarized in Table 1.

In order to validate these in vitro study findings, Cook et al.

(2014, 2016) conducted a preclinical canine model study. In

this study, canine femoral condyle OCAs were stored for 28 or

60 days after procurement at room temperature using our novel

protocol with a proprietary media named Media 3 and a pro-

prietary container named “C” compared to the SOC tissue bank

protocol at 4�C. Mean chondrocyte viability in OCAs stored in

our protocol was 82% at day 28 and 89% at day 60 while for

those stored using the SOC protocol was 60% at day 28 and

52% at day 60. In this study, all successful OCAs as determined

by radiographs, arthroscopy, histology, extracellular matrix

biochemistry, and biomechanics had greater than 70% chon-

drocyte viability at the time of implantation regardless of pre-

servation protocol or storage duration. OCA plugs stored at

room temperature with our novel protocol had a successful

outcome rate of 85% (12 successful grafts of 14) while those

stored using the SOC protocol had a successful outcome rate of

28% (4 successful grafts of 14; Figure 1).

Based on the results of the canine studies, patent protection

has been achieved and continues to be pursued for the novel

OCA preservation system, which has also been trademarked as

the MOPS™, acronym for Missouri Osteochondral Allograft

Preservation System. A. M. Stoker, Stannard, et al. (2017)

designed and conducted a study to evaluate the effectiveness

of MOPS for maintaining essential chondrocyte viability in

human femoral condyle OCAs. This study revealed that human

OCAs stored using MOPS at room temperature maintained

excellent VCD, with mean %VCD at 95.4% of day 0 controls

at day 28 and 98.6% at day 56 with weekly media changes and

mean %VCD of 102.9% of day 0 controls at day 28 and 89.2%
at day 56 without media changes (Table 2). Moreover, in OCAs

stored using MOPS protocol without media changes, %VCD

was maintained above the minimum sufficient viability level at

day 70 (73.9%). Importantly, all OCAs were negative for

microbial growth at all time points when tested according to

the current U.S. Pharmacopeia <71> protocol (www.pharmawe

binars.com/usp-71-pharma-webinars/), and extracellular

matrix composition and biomechanical properties were

Table 1. The Canine Osteochondral Allograft Preservation Optimization Studies Data.

Temperature (Storage Place) Media (Refresh Frequency) Container % Cell Viability Compared to Day 0 Controls Reference

4�C (fridge) Media 1 (every 7 days) A 51.4% at day 28
35.4% at day 56

Garrity et al. (2012)

37�C (CO2 incubator) Media 1 (every 7 days) A 98.9% at day 28
90.0% at day 56

4�C (fridge) Media 2 (every 7 days) A 43.1% at day 28
35.3% at day 56

37�C (CO2 incubator) Media 2 (every 7 days) A 73.1% at day 28
36.0% at day 56

37�C (CO2 incubator) Media 3 (every 7 days) A >100% at day 56 Stoker et al. (2011)
25�C (room) Media 1 (every 7 days) A 31.5% at day 63 Stoker et al. (2012)
25�C (room) Media 1 (every 7 days) B 72.9% at day 63
25�C (room) Media 1 (every 7 days) C 76.4% at day 63
25�C (room) Media 2 (every 7 days) A 1.4% at day 63
25�C (room) Media 3 (every 7 days) C >100% at day 63
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Figure 1. Radiographic and histologic comparison between an unsuccessful osteochondral allograft (OCA) preserved 60 days with a current
standard of care protocol and a successful OCA preserved 60 days in our novel protocol (MOPS™) 6 months after press-fit implantation in
femoral condyles from a preclinical canine model study (Cook et al., 2016; Cook et al., 2014). Radiographically, an unsuccessful OCA in medial
femoral condyle shows mild articular surface irregularities (box) while a successful OCA in medial femoral condyle shows smooth articular surface
(box). Histologically, an unsuccessful OCA graft is characterized by an irregular surface, loss of viable chondrocytes, and depletion of toluidine
blue staining in cartilage while a successful OCA graft has a smooth surface, intact chondrocytes, and abundant glycosaminoglycan (hematoxylin
and eosin and toluidine blue). MOPS™ ¼ Missouri Osteochondral Allograft Preservation System.

Table 2. The Human Osteochondral Allograft Preservation Studies Data.

Temperature (Storage
Place)

Media (Refresh
Frequency) Container

% Cell Viability Compared to
Day 0 Controls Reference

4�C (fridge) Media 3 (every 7 days) C 52.4% at day 28
25.3% at day 56
8.7% at day 70

Stoker, Stannard, et al.
(2017)

4�C (fridge) Media 3 (no change) C 50.7% at day 28
25.8% at day 56
15.4% at day 70

25�C (room) Media 3 (every 7 days) C 95.4% at day 28
98.6% at day 56
46.8% at day 70

25�C (room) Media 3 (no change) C >100% at day 28
89.2% at day 56
73.9% at day 70
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maintained in MOPS OCAs for 70 days after procurement (A.

M. Stoker, Stannard, et al. 2017).

Osteochondral grafts including MOPS OCAs are regulated

under U.S. Food and Drug Administration section 361 of the

Public Health Service Act and 21 Code of Federal Regulation

1271 that defines human cells, tissues, or cellular- or tissue-

based products. MOPS technology is licensed to Musculoske-

letal Transplant Foundation for use in preparation of OCAs. In

conjunction with the implementation of MOPS grafts at our

center, we have also optimized the surgical techniques for graft

creation and implantation to include patient-specific graft con-

touring, autogenous bone marrow aspirate concentrate (BMC)-

treated donor bone (Oladeji et al. 2017; Stoker, Baumann, et al.

2017), and treatment-specific postoperative rehabilitation.

Patients receiving MOPS OCA transplants are enrolled in a

dedicated IRB-approved registry for prospective assessment

of outcomes. Outcome assessments include VAS pain, IKDC,

SANE, Tegner, and PROMIS Mobility at 6 months and yearly

after surgery. All complications and reoperations are recorded.

OCA survival is determined based on maintenance of accep-

table levels of pain and function and/or need for revision sur-

gery. To date, mean %VCD for MOPS allografts transplanted

into this cohort of patients (n ¼ 42) is 98% (range 86–100%).

Mean age of patients is 34.8 years. Mean follow-up is 9 months

with a range of 6–15 months. At 6 months postoperatively, all

outcome measures were improved from preoperative status

with pain and SANE scores reaching significantly (p < .05)

higher levels. At 1 year postoperatively, all outcome measures

were significantly (p < .05) improved compared to preoperative

status. Revision surgery has been required in 4.8% of patients,

and 11.9% of patients required minor reoperations for lysis of

adhesions to restore range of motion and/or for screw removal.

No patients have required TJR, making initial MOPS grafts

survival 95.2%, and no surgery-related infections, deep vein

thromboses, or pulmonary emboli have been encountered in

this cohort. All patients returned to work by 6 months after

surgery and 83% returned to preinjury level of activity

(Tegner) by 1 year after surgery. All outcome assessments are

ongoing as part of the registry. Figure 2 illustrates our One

Health–One Medicine approach to develop a novel OCA trans-

plantation protocol.

Discussion

Historically, fresh OCAs were kept in lactated Ringer’s solu-

tion and were transplanted within a week after procurement and

were consistently associated with highly successful outcomes

(Chu et al. 1999; Gross et al. 1983). However, currently, OCAs

are typically stored in culture media at 4�C with approximately

2 weeks prior to implantation (LaPrade et al. 2009) in order to

assure sterility. Therefore, OCAs in the United States are trans-

planted after 2–4 weeks of tissue bank storage, averaging 24

days and ranging between 15 and 43 days after procurement

(Gortz and Bugbee 2006; LaPrade et al. 2009; McCulloch et al.

2007; R. J. Williams et al. 2007). Multiple studies have shown

that human OACs stored using the standard method for U.S.

tissue banks (i.e., stored in culture media at 4�C) undergo sig-

nificant decreases in chondrocyte viability to below the 70%
threshold that is considered essential for maximizing clinical

success and transplant survivorship within 28 days or less

after procurement. (Allen et al. 2005; Ball et al. 2004;

A. M. Stoker, Stannard, et al. 2017; S. K. Williams et al.

2003). This narrow transplantation life window for effective

surgical implantation severely limits clinical use (quantity)

and success (quality) of OCAs.

Our translational research approach to current OCA trans-

plantation limitations yielded a clinically applicable OCA pre-

servation method, MOPS, which has been validated, patented,

and meets regulatory requirements for use in patients. The

MOPS protocol for preservation of OCAs in a proprietary solu-

tion and container at room temperature (*25�C) maintained

sufficient chondrocyte viability, articular cartilage extracellu-

lar matrix composition, and material properties for at least 60

days after procurement and resulted in functional outcomes in a

preclinical canine model (Cook et al. 2014, 2016). In addition,

client-owned clinical canine patients treated with MOPS-

preserved OCAs have realized consistently successful long-

term outcomes (Cook, Cook, and Kuroki 2010).

MOPS-preserved human femoral condyle OCAs maintained

day-0 VCD levels for at least 56 days after procurement with-

out media changes (A. M. Stoker, Stannard, et al. 2017). All

human OCAs stored with MOPS at room temperature were

negative for microbial growth and maintained extracellular

matrix composition and biomechanical properties for more

than 56 days after procurement as well. Initial clinical out-

comes in human patients treated with MOPS-preserved allo-

grafts, BMC-treated donor bone, and treatment-specific

postoperative rehabilitation showed low complication rates and

morbidity and significant improvements in levels of pain and

function at 1 year after surgery. However, continued assess-

ment is necessary to determine whether these results can be

sustained long term.

The potential adverse immune response to OCAs is an

important safety consideration for clinical use of these allo-

grafts. Hyaline cartilage is considered to be relatively immu-

noprivileged due to chondrocytes being masked from host

immune surveillance by their abundant extracellular matrix

(Gortz and Bugbee 2006; Langer and Gross 1974; Langer

et al. 1978), and the transplanted bone is irrigated to remove

antigenic cells and proteins. The concept of OCA immunopri-

vilege has been supported by extensive evidence of good clin-

ical outcomes after OCA transplantations despite no human

leukocyte antigen (HLA) or ABO blood-type matching

between donor and recipient (Hunt et al. 2014). In addition,

patients do not require immunosuppressive treatments to avoid

graft rejection after OCA implantation. However, leukocyte

antigen sensitization of the recipient has been demonstrated

in human patients (Hunt et al. 2014; Sirlin et al. 2001) and in

a canine model (Stevenson 1987); yet, no clinical differences in

outcomes were observed between 33 patients with positive

anti-HLA antibody and 34 patients with negative anti-HLA

antibody in a case-control study (Hunt et al. 2014). As such,

Kuroki et al. 5



the roles and clinical significance of subrejection immunologic

responses to OCAs are not fully understood and warrant further

investigation. The addition of autogenous BMC to the osseous

portion of OCAs for all patients at our center is designed in part

to mitigate any untoward immune responses, further optimiz-

ing outcomes after OCA transplantation (Oladeji et al. 2017).

This body of research has validated MOPS for significantly

increasing effective storage duration of OCAs and significantly

improving chondrocyte viability in stored OCAs at room tem-

perature without changing a proprietary media in a proprietary

container, which combined can profoundly increase the num-

ber of grafts that can be safely transplanted into eligible

patients. These improvements will allow surgeons to have

increased confidence in the quality of grafts they are transplant-

ing, provide tissue banks and graft coordinators with a much

longer period of time for matching and delivering OCAs, and

offer patients higher chances for highly functional long-term

outcomes and graft survivorship, resulting in decreased donor

tissue waste and related financial costs. Although approxi-

mately 30,000 donors provide tissue for transplant in the

United States in each year (www.aatb.org), the demand for

osteochondral tissue will continue to far exceed supply, even

with the use of MOPS. The number of total knee replacement

surgeries alone in the United States is rapidly increasing from

approximately 263,000 cases in 1999 to 616,000 cases in 2008

(Bernstein and Derman 2014). The demand for knee replace-

ments is estimated to exponentially increase to 3.48 million

cases by the year 2030 (Kurtz et al. 2007). So, although this

body of research has provided important progress in addressing

quantity, quality, and technique limitations for successful OCA

Figure 2. Illustration summary of One Health–One Medicine approach and development of a novel osteochondral allograft (OCA) transplanta-
tion protocol in our laboratory. OCA preservation method was optimized by in vitro studies using canine tissues and validated by preclinical canine
studies. Based on the results of those studies, the novel OCA preservation method, MOPS™ protocol, was applied to human tissues for
validation. Photomicrographs for live and dead staining (Calcein AM-Ethidium homodimer) show excellent cell viability in human femoral condyle
OCA preserved in MOPS at day 56 of storage while markedly decreased viable chondrocytes in OCA preserved with a current standard of care
protocol at day 28 after procurement. Risks of bone collapse and delayed union associated with large OCA grafts have been reduced in our center
by optimizing graft thickness and geometry. Osseous integration potential for OCAs is enhanced, and untoward immune responses are mitigated
by treating subchondral bone of OCAs with autogenous bone marrow aspirate concentrate. MOPS™ ¼ Missouri Osteochondral Allograft
Preservation System.
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transplantation, development and validation of effective pre-

ventative, preservation, and tissue engineering strategies for

articular cartilage disorders in clinical canine and human

patients are of critical importance. The authors suggest that a

One Health–One Medicine comparative and translational

approach to addressing this critical unmet need can prove

successful.
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