Foot Pain and Pedorthotics

Heikki Uustal, M.D.
Medical Director, Prosthetic/Orthotic Team
JFK - Johnson Rehab Institute
Outline

• Normal anatomy
• Biomechanics of the foot and ankle
• Pathology
• Treatment options
Critical Bony Structures
Lateral Ligaments

Medial Ligaments
Supination and Pronation (mitered hinge joint)
Plantarflexors:
- Gastroc-soleus
- Posterior tib
- Peroneus longus

Dorsiflexors:
- Anterior tib
- Extensor hallucis
- Extensor digitorum
Inversion:
Posterior tib
Anterior tib

Eversion:
Peroneus longus and brevis
Shoe Lasts Adapted to Foot Types

- Fully board-last shoe provides support for pronated foot (insole removed in this plate).
- Slip-last shoe (most flexible) provides flexibility for cavus (rigid) foot.
- Combination last provides hindfoot stability, (board lasted); forefoot flexibility at toe-off (slip lasted).

Heel-cradled insole of polyurethane maintains heel fat pad in proper alignment; removable and replaceable with orthotic device if indicated.
Pronated (hyperflexible) foot:
- Plantar view shows gait pressure pattern.
- Straight, board-lasted shoe provides medial support in midstance.
- Medial view: Flattened longitudinal arch during weight bearing.
- Posterior view: Hyperpronation during midstance.
- Heel strike.

Cavus (rigid) supinated foot:
- Plantar view shows gait pressure pattern.
- Curved, slip-lasted shoe accommodates to supinated foot, preventing shoe deformation.
- Medial view: Cavus foot during weight bearing.
- Posterior view: Pronation limited during midstance.
- Heel strike.
Plantar Fasciitis

Pathology: Inflammation of plantar fascia
Associated with lack of DF ROM and lack of arch support
Calcaneal spurs develop long term

Treatment: Daytime semi-rigid foot orthotics with arch support (and heel lift?)
NSAID and physical therapy
Relative rest
Night time splinting in neutral
Steroid injection if necessary
Plantar Fasciitis
Heel spur syndrome

Calcaneal spur at attachment of plantar aponeurosis

Plantar aponeurosis with inflammation at attachment to calcaneal tuberosity

Medial malleolus

Flexor retinaculum

Medial calcaneal branch of tibial nerve

Positive bone scan of calcaneal stress fracture
Foot Orthotics
So Many Choices
Custom Foot Orthotics
Night-time positioning splint
Ankle Sprain

Pathology: Usually inversion injury
- Partial tear of anterior talo-fibular ligament
- Possibly tear of calcaneo-fibular ligament

Treatment: “RICE” initially
- Requires 3-4 weeks of protection
- May require long-term M-L support
 (McDavid, Swedo non-elastic ankle lacer)
- Exercises for M-L stability
 (BAPS board)
THE NEW STANDARD FOR LACED ANKLE BRACES

The McDavid A-101 Ankle Guard is fast becoming the brace of choice for many sports-medicine professionals and players alike. Check these outstanding features against our competition and you will see why:

- Three full layers of nylon/vinyl fabric provide stability and durability.
- New extended heel elastic for better fit and user comfort.
- New elastic forefoot allows easy application, less bulk and prevents tongue migration. (All without compromising a layer of fabric.)
- Optional plastic inserts provide added support and make this two products in one!
- Notched front allows easier flexion.
- Spring steel stays provide necessary stability.
- A season long guarantee means this brace costs about 1/10 the cost of daily taping.

Why not choose the best? Choose the McDavid A-101 Ankle Guard, the new standard for laced ankle braces.

For more information on the A-101 Ankle Guard or other McDavid Sports Medical Products contact us today:

McDavid Knee Guard, Inc., P.O. Box 9, Clarendon Hills, IL 60514 • (312) 969-1280 • (800) 237-8254
Why do aircasts fail?
Posterior Tibialis Tendonitis

Pathology: Overstretch of posterior tibialis tendon due to pronating foot or collapsing arch

Treatment: Control arch and calcaneo-valgus positioning with foot orthotic and strong counter shoes/sneakers. NSAID and physical therapy. Worst case needs UCBL orthotic.
Corrective semi-rigid foot orthotics
UCBL
Foot
Orthotic
Sub-talar Joint Control
Heel Pain

Pathology: Chronic inflammation at the origin of the plantar fascia causes painful bone spurs

Early sign of R.A.

Recurrent branch of the Tibial Nerve

Treatment: Soft gel heel pad

SACH heel on shoe

Foot orthotic for arch support
Soft Heel Wedge
Metatarsalgia

Pathology: Tenderness at metatarsal heads due to lack of natural padding or poor footwear for sports

Treatment: Foot orthotics with met pad or bar
Rigid or board-lasted shoes to minimize toe-break
Add Met Bar or Build-up from Heel to Met Heads
Shoe Lasts Adapted to Foot Types

Fully board-lasted shoe provides support for pronated foot (insole removed in this plate)

Cardboard or fiberboard; shoe uppers glued to its underside

Slip-lasted shoe (most flexible) provides flexibility for cavus (rigid) foot

Slip-lasted shoe (most flexible) provides flexibility for cavus (rigid) foot

Combination last provides hindfoot stability, (board lasted); forefoot flexibility at toe-off (slip lasted)
Neuroma

Pathology: Swelling and inflammation of distal nerves between 3rd-4th metatarsals
Sometimes due to tight footwear

Treatment: Proper footwear (wide toe-box)
Injection of steroids
Limited ambulation
Surgical resection as last resort
Bunion/Hallux Valgus

Pathology: Usually hereditary lateral deviation of big toe with hypertrophy of medial portion of 1st MCP joint

Commonly associated with pronated feet

Treatment: Extra-depth orthopedic shoes with wide-lasted (bunion-lasted) toe box

Foot orthotic for pronation control

Surgical correction as last resort
Sesamoiditis

Pathology: Inflammation of sesamoid bones under 1st MTP joint due to excessive impact from running and excessive extension of big toe

Treatment: Foot orthotic with build up at 1st metatarsal shaft and relief at sesamoid bones
Extra-depth shoe with rigid sole to minimize toe-break
Metatarsal Stress Fracture

Pathology: Overuse fracture of metatarsal shaft commonly seen in runners

Treatment: Rigid sole shoe or removable rigid boot (CAM walker)
Stress Fractures

Positive bone scan of tarsal stress fracture

Radiograph of stress fracture of distal fibula

Morton’s foot
May be factor in metatarsal fractures

Greater impact on 2nd and 3rd metatarsals

Short 1st metatarsal

Hypermobile 1st ray

Running in water with water skiing, exercise is excellent conditioning exercise during fracture healing. Fiberglass cast may be worn in water.
Achilles Tendonitis

Pathology: Inflammation of Achilles tendon near insertion to calcaneous
Common in cutting and turning sports (tennis) and mountain hiking
Lack of adequate dorsiflexion for sport

Treatment: Removable rigid boot (CAM walker)
NSAID and physical therapy modalities
Need to improve ankle DF ROM
Achilles Tendonitis

Uphill running, especially in shoes with poorly flexible soles, puts strain on Achilles tendon at toe-off

In downhill running, forceful impact transmitted to Achilles tendon

Gastrocnemius m.

Soleus m.

Achilles (calcaneal) tendon

Calcaneal tuberosity

Fat pad

Achilles tendon with inflammation at insertion into calcaneal tuberosity

Cavus foot predisposes to Achilles tendonitis

Hyperpronation due to soft heel counter exerts torsion on tendon

Tenderness over tendon. Swelling may or may not be present
Hammer Toes

Pathology: Can be hereditary deformity
Often associated with intrinsic muscle atrophy due to neuropathy

Treatment: Extra-depth orthopedic shoes with high toe box
Molded foot orthotic with met pad
“Live with it”
Thank You