Surgical Considerations in Lower Extremity Amputation

Kyle M Schweser, MD

Associate Professor University of Missouri

Disclosures

- Consultant
 - ODI
 - Synthes
 - KCI

Objectives

- Understand the indications for lower extremity amputation
- Understand the principles and goals of lower extremity amputation
- Review specific levels of amputation and important considerations for each

Indications

- Traumatic
- Infection
- Peripheral Vascular Disease
- Neurological
- Burns/soft tissue defect
- Congenital deformity
- Tumors

- 130,000 new amputation/year
 - 15% are trauma related
 - Young males
- 16 million people with an amputation
 - 45% trauma

Acute trauma

• Chronic trauma

Acute trauma

• Chronic trauma

How Do We Make Our Decisions?

- Plantar sensation?
- Injury severity?
- Cost?
- Outcomes?
- Gut feeling?

- LEAP
 - 569 patients
 - Prospective study
 - Amp vs limb salvage
 - 2 and 7 year data
 - Male (77%), white (72%)
 - Uneducated, poor, no insurance, heavy drinkers

- Absent plantar sensation
 - Does not mean amputation
 - Over 50% of salvages regained sensation by 2 years
 - Salvage had similar rates of sensation at 2 years
 - Regardless of presentation

- Mangled Extremity Severity Score
 - Historically >8=amputate
- Scoring systems NOT predictive of successful limb salvage

- Amputations more cost effective
 - 2 year cost
 - Salvage \$81,316
 - Amputation \$91,106
 - Lifetime projection
 - Salvage \$163,282
 - Amputation \$509,275

- People do better with an amputation
 - No difference in the Sickness Impact Profile
 - At both 2 and 7 years

- Salvage does have higher
 - Depression
 - Anxiety
 - PTSD
 - Rates of complications

How Do We Make Our Decisions?

- Overall clinical picture
- Patient social situation
- Patient desired outcomes/expectations

Indications

- Infection
 - Diabetes
- Peripheral Vascular Disease
 - Diabetes (71%)
 - 80% of lower extremity amputations
- Neurological
 - Neuropathy (diabetes)
 - Contractures

Indications

- Burns/soft tissue defects
- Congenital deformities
- Tumors
 - Goal=Clear margins

- Initial
 - Debride to healthy tissue
 - Preserve soft tissue
 - Preserve length
 - Balance muscular forces

- Eventual
 - Early return to function
 - Painless residual limb
 - Prevention of contractures
 - Mobility vs stability

Goal

Do it right the first time

- Debride to healthy tissue
 - Easiest part
 - May require multiple surgeries

- Preserve Soft tissue
 - Viable tissue
 - Atypical flaps

- Preserve length
 - Dependent on level
 - Important for function
 - Important for prosthetics

- Consider length
 - Dependent on level
 - Important for function
 - Important for prosthetics

- Balance muscle forces
 - Prevent unopposed forces
 - Issues with prosthetics
 - Ulcers
 - Pain

General Amputation Principles

- Skin
- Muscle
- Nerves
- Blood Vessels
- Bone

Skin

• Painless, pliable, nonadherent scar

- Scar placement and prosthetic wear
 - Viable level
- Coverage:
 - Flap coverage
 - Skin graft

Muscle

- Myofascial closure
 - Minimal muscle stabilization
- Myoplasty
 - Opposing muscle groups
- Myodesis
 - Attached to bone
- Tenodesis
 - Tendon attached to bone

Nerves

- Avoiding painful neuromas
 - Separate from vessels
 - Pain generator
 - Traction on nerve and sharply transect
 - Retracts to safety
 - Nerve preparation
 - Ligation
 - Injection
 - Transfer

Blood Vessels

Suture ligate major vessels

- Full-thickness skin flaps
 - Minimize wound necrosis

- Hemostasis prior to closure
 - Drains

Bone

- Minimize sharp edges
 - Beveling/filing
- Narrow metaphyseal flare/condyles
- Cap intramedullary canal
 - Minimize bleeding
- Minimize periosteal stripping
 - Exostosis

- Factors
 - Soft tissue
 - Blood flow
 - Functional requirements

- Soft tissue
 - Trauma
 - Infection
 - Previous surgeries

- Blood flow
 - Traumatic
 - Vascular disease

- Functional requirements
 - Young, healthy
 - Preserve length
 - Be aggressive
 - Flaps
 - Skin grafts
 - Sick, low demand
 - Consider prosthetic odds
 - Preserve length for sitting
 - Goal is one surgery
 - Bilateral
 - Consider atypical amps

- Metabolic Demand
 - Proximal = increased demand
 - Exception—Syme
- Must evaluate the patient
 - Diabetic with bilateral BKA won't do well

Metabolic Demand

- •Syme 15%
- Transtibial
 - •Traumatic 25% average
 - Vascular 40%

Metabolic Demand

- Transfemoral
 - •Traumatic 68%
 - Vascular 100%
- Thru-knee amputation
 - Varies based on patient habitus
 - Between transtibial and transfemoral

Metabolic Demand

- Bilateral amputations
 - •BKA + BKA 40%
 - •AKA + BKA 118%
 - •AKA + AKA >200%

Preoperative Evaluation

- Nutrition labs
 - Albumin > 3 g/dL
 - Total lymphocyte > 1500/mm3
- Transcutaneous Oxygen
 - > 30 (45 ideal)
- Toe pressure
 - > 40 (< 20 absolute contraindication)
- ABI
 - > 0.45

Levels of Amputation

Toe

• Ray resection

Partial forefoot

Transmetatarsal

• Symes

Modified Symes

BKA

Through knee

AKA

Hip Disarticulation

Hemipelvectomy

Toe

- Interphalangeal
 - Leave cartilage
 - Trim condyles

- Transect tendons and nerves
 - Do not sew tendons together

- Great toe
 - Leave 1cm
 - Foot balance and function

Ray Resection and Partial Foot

- Includes toe and part of metatarsal
- Preserve 1st MT length
 - Orthosis
 - Foot balance
- Avoid sharp bony prominences
- Multiple lateral rays

Transmetatarsal

- Considered
 - 2 or more medial rays
 - More than one central ray
- Preserve length
- Maintain arch and metatarsal cascade
- Avoid Achilles contracture
 - Achilles lengthening

Transmetatarsal

Ng et al. JAAOS 2010

D

Negatives for Transmetatarsal

- Foot balance
- Prosthetic fit
- Wound healing
 - •33% primary wound closure
 - •56% may require revision to higher level

Diabetics and Foot Amps

- •75% get revised by 9 months
 - •87% revised to BKA

Symes

Ankle disarticulation

- Required
 - Viable heel pad

- Modifications
 - Malleoli excision
 - Incision

Symes

Benefits

- Longer limb/less energy
- High level walkers
- End bearing for obese patients
- Ambulate without prosthesis
- Less metabolic demand than midfoot

Negatives

- Wound healing
- Heel pad instability
 - Major issue
- Can't really walk barefoot

Symes

Must preserve posterior tibial arterial supply

Ng et al. JAAOS 2010

Other Foot Amps

Pirogoff

- Remove all but calcaneus
- Fuse calcaneus to tibia
- No need for prosthesis

Chopart

- Leaves talus and calcaneus
- Requires tendon transfers
- Requires achilles lengthening
- Poor prosthetic options

• Lisfranc

- Leaves all tarsal bones
- Preserve base of 5th
- Requires tendon transfer
- Same metabolic demand of BKA

Below Knee Amputation

- Most common
- Longer is better
 - Soft tissue
 - 8-12 cm from ground for most high-impact prosthetics
- Minimum to utilize BKA prosthesis
 - 2.5 cm per 30cm pt height
 - 5cm distal to the tubercle

Below Knee Amputation: Techniques

Long posterior myocutaneous flap

Modify skin flaps based upon available skin

• ID neurovascular structures

Isolate fibula and transect 1.5cm above tibia

Below Knee Amputation: Techniques

Tibial cut

Bevel bone cuts

Ligate vessels and transect nerves

Myodesis vs. myoplasty

Below Knee Amputation

Staged

- Traumatic or infection
- Guillotine
 - Allows soft tissues and bone to declare

Ertl Procedure

- Tibiofibular synostosis
- Indication
 - Young
 - Proximal tib/fib instability
 - High activity level

Technique

- Fibula cut at same level
- Leave medial periosteal hinge
- Connect to tibia
 - Metal
 - Suture

Ng et al. JAAOS 2010

- 45y/o s/p MCC
- Police officer
- Right open femur fx
- Right open tib/fib with vascular insufficiency
- Ex-fix
- Multiple debridements
- Progressive necrosis

- Femur infected
 - ABX beads
 - IV abx
 - debridements

- 2 STSG
- Suture removal

• 11mo

After prosthesis

 c/o knee pain and crepitance

Why not Ertl?

- Outcomes
 - Functional scores = no benefit (Ng et al. JAAOS 2010)
- Increasing risk for:
 - Nonunion
 - Painful hardware
 - Infection

BKA at all costs

Improved energy expenditure

- Soft tissue reconstruction to maintain length and knee function
 - Skin graft or substitute
 - Muscle flap

More functional prosthesis

 40y/o male s/p BKA due to mangled lower extremity after go-cart accident

- Within 2 weeks of BKA and DPC
 - Infected
 - Necrotic skin

Options

Revision to AKA

 Reconstruct soft tissue weightbearing surface

Multiple debridements

 Negative pressure wound therapy (NPWT)

STSG low probability

- Muscle flap required
 - Gracillis rotation flap

Gracillis covering tibia

• STSG over muscle

Through Knee Amputation/Knee Disarticulation

- Prosthetists
 - Bulbous end
 - Knee axis lower to the ground
 - Self image issues
- End bearing residual limb
- Soft tissue coverage
 - Improved with posterior flap technique

Indications

• Trauma

Infection

Dysvascular

- Nonambulatory
 - Risk of knee contractures with BKA
- Unlikely to get into prosthesis with AKA

Through Knee Amputation/Knee Disarticulation

Benefits

- End bearing surface
- Sitting comfort
- Longer lever arm
- Balanced thigh muscles
- Prosthetic suspension (femoral condyles)

Negatives

- Knee height
- Soft tissue coverage
- Slower walking speeds (BKA)
- Worse performance on SIP (AKA and BKA)

Technique

 Suture patellar tendon to cruciates

- Patella not distal to femur
 - Not a cap

Posterior Flap Technique

Through Knee Amputation/Knee Disarticulation

- LEAP study
 - Slowest walking speed
 - Least satisfaction

- •12/18 no gastroc coverage
- •= poor prosthetic tolerance

Mackenzie et al. JBJS 2004

Above Knee Amputation

- Maintain length
 - 12cm proximal to knee is ideal

- Energy expenditure
 - Increased

- Recurrent infected total knee arthroplasty
 - Alternative = knee fusion

Technique

- Fish mouth incision
- Modify to not be end bearing if soft tissues allow
- Myodese adductors
- Myodese quad and hamstrings
- No myodesis = poor function and pain
 - Femur moves within muscular sleeve

Above Knee Amputation

Case Example: Maintain length at all cost

- 32 y/o s/p MCC
- Left open tibial shaft fx
- Left open bicondylar tibial plateau fx
- Left open femoral shaft fx
- Left femoral neck fx
- Left clavicle fx
- Left ulna fx

Case Example

Case Example

Case Example

• Rides horses

No residual pain

Hip Disarticulation

Indications

- Preservation of life
- Co-morbid pt with infection and sepsis
- Necrotizing fasciitis
- Non-ambulators (paraplegics)
- Advanced ischemic disease
- Tumor

Hip Disarticulation

- Problems
 - Wound management
 - Sitting balance
 - No prosthesis?
 - May choose not to wear
 - Use crutches anyway

Technique

- Lateral position
- Medial and lateral skin flaps

- Use muscles to fill dead space
- Wound complications

Hemipelvectomy

- Indications
 - Same as hip disarticulation
 - Tumor more common
 - More common in military recently
- Procedure of last resort
- Poor functional outcome

Technique

Semi-lateral position

Large posterior flap

 Keep as much of the hemi pelvis as possible for sitting balance

Complications

Amputation Site Breakdown

Early

- Delayed wound healing
 - Immunocompromised
 - Malnourished
 - Infection
- Marginal necrosis
 - Appropriate surgical technique
- 13% overall (20% BKA)

Amputation Site Breakdown

Late

- Deep infection
 - Usually associated with PVD, DM
 - Trauma=34% rate

Adherent skin

Poor prosthetic fit

Infection

- Debridement
- Antibiotics
- Local wound care
- Secondary healing
 - Prolonged wound healing
- Revision amputation

Amputation Site Prominence

- Overgrowth
 - Traumatic
- Bone spur
- Muscle atrophy
- Failed myoplasty/myodesis
- Skin hypertrophy
- Bursitis
- Bulbous/floppy residual limb
 - Poor surgical technique

Amputation Site Prominence

Indications for Revision Amputation

Poor prosthetic fit

Limited function

• Pain

Skin at risk

Neurological Complications

- Neuroma
 - 20-30% amputations

- Phantom limb pain
 - 53-100% of traumatic amputations

Neuroma

• All nerve transections form neuromas

- Painful
 - Positive Tinel's

- Causes
 - Poor surgical technique
 - Scar formation
 - High pressure area

Neuroma

- Avoid
 - Nerve stump retracts into soft tissue away from scar and prominent areas
 - Can suture to muscle
- Management
 - Prosthetic adjustment
 - Injection
 - Scar massage
 - Surgical resection
 - Targeted muscle reinnervation

Phantom Limb Pain

May be nonpainful

- Painful
 - Up to 85% in LE
 - ~40-69% in UE

Phantom Limb Pain

- Surgical
 - Dehydrogenated alcohol and marcaine into epineureum

- Non-surgical
 - Neurontin
 - Shown effective
 - Vitamin C?
 - Regional anesthetics perioperatively?

Joint Contracture

• Usually related to short lever arm

Contracture release and tenolysis may be required if fixed deformity

Heterotopic Ossification/Bone Spur

- Associated with:
 - Severe trauma
 - Excessive manipulation of periosteum
 - Residual bone after osteotomy
- May require surgical resection if problematic
 - Recurrence of HO

Summary

- Several Indications for amputations
 - Consider your patient and all factors
- When possible, optimize your patient
- Preserve length is typically the correct answer
 - BKAs do better functionally than TMAs
 - Symes require less oxygen than TMAs
- Surgical technique is as important to complications as optimization

References

- 1. Smith DG, Michael JW, Bowker JH, American Academy of Orthopaedic Surgeons. *Atlas of amputations and limb deficiencies : surgical, prosthetic, and rehabilitation principles*. 3rd ed. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2004.
- 2. Scott et al. Traumatic and Trauma-related Amputations I and II. JBJSAm Dec 2010
- 3. Ng and Berlet. Evolving Techniques in Foot and ankle Amputations. JAAOS April 2010
- 4. Lower Extremity Assessment Project (LEAP) The Best Available Evidence on Limb-Threatening Lower Extremity Trauma. Higgins

Thanks

• Brett Crist for providing cases and slides