Surgical Considerations in Lower Extremity Amputation

Kyle M Schweser, MD
Associate Professor
University of Missouri
Disclosures

• Consultant
 • ODI
 • Synthes
 • KCI
Objectives

• Understand the indications for lower extremity amputation
• Understand the principles and goals of lower extremity amputation
• Review specific levels of amputation and important considerations for each
Indications

• Traumatic
• Infection
• Peripheral Vascular Disease
• Neurological
• Burns/soft tissue defect
• Congenital deformity
• Tumors
Trauma

- 130,000 new amputation/year
 - 15% are trauma related
 - Young males

- 16 million people with an amputation
 - 45% trauma
Trauma

• Acute trauma

• Chronic trauma
Trauma

• Acute trauma

• Chronic trauma
How Do We Make Our Decisions?

- Plantar sensation?
- Injury severity?
- Cost?
- Outcomes?
- Gut feeling?
Trauma

• LEAP
 • 569 patients
 • Prospective study
 • Amp vs limb salvage
 • 2 and 7 year data
 • Male (77%), white (72%)
 • Uneducated, poor, no insurance, heavy drinkers
LEAP

• Absent plantar sensation
 • Does not mean amputation
 • Over 50% of salvages regained sensation by 2 years
 • Salvage had similar rates of sensation at 2 years
 • Regardless of presentation
LEAP

• Mangled Extremity Severity Score
 • Historically >8=amputate

• Scoring systems NOT predictive of successful limb salvage
LEAP

• Amputations more cost effective
 • 2 year cost
 • Salvage $81,316
 • Amputation $91,106
 • Lifetime projection
 • Salvage $163,282
 • Amputation $509,275
LEAP

• People do better with an amputation
 • No difference in the Sickness Impact Profile
 • At both 2 and 7 years
LEAP

• Salvage does have higher
 • Depression
 • Anxiety
 • PTSD
 • Rates of complications
How Do We Make Our Decisions?

• Overall clinical picture
• Patient social situation
• Patient desired outcomes/expectations
Indications

• Infection
 • Diabetes

• Peripheral Vascular Disease
 • Diabetes (71%)
 • 80% of lower extremity amputations

• Neurological
 • Neuropathy (diabetes)
 • Contractures
Indications

• Burns/soft tissue defects
• Congenital deformities
• Tumors
 • Goal=Clear margins
Goals

• Initial
 • Debride to healthy tissue
 • Preserve soft tissue
 • Preserve length
 • Balance muscular forces
Goals

• Eventual
 • Early return to function
 • Painless residual limb
 • Prevention of contractures
 • Mobility vs stability
Goal

• Do it right the first time
Goals

• Debride to healthy tissue
 • Easiest part
 • May require multiple surgeries
Goals

• Preserve Soft tissue
 • Viable tissue
 • Atypical flaps
Goals

• Preserve length
 • Dependent on level
 • Important for function
 • Important for prosthetics
Goals

• Consider length
 • Dependent on level
 • Important for function
 • Important for prosthetics
Goals

• *Balance muscle forces*
 • *Prevent unopposed forces*
 • *Issues with prosthetics*
 • *Ulcers*
 • *Pain*
General Amputation Principles

- Skin
- Muscle
- Nerves
- Blood Vessels
- Bone
Skin

• Painless, pliable, nonadherent scar

• Scar placement and prosthetic wear
 • Viable level

• Coverage:
 • Flap coverage
 • Skin graft
Muscle

- Myofascial closure
 - Minimal muscle stabilization
- Myoplasty
 - Opposing muscle groups
- Myodesis
 - Attached to bone
- Tenodesis
 - Tendon attached to bone
Nerves

- Avoiding painful neuromas
 - Separate from vessels
 - Pain generator
 - Traction on nerve and sharply transect
 - Retracts to safety
- Nerve preparation
 - Ligation
 - Injection
 - Transfer
Blood Vessels

• Suture ligate major vessels

• Full-thickness skin flaps
 • Minimize wound necrosis

• Hemostasis prior to closure
 • Drains
Bone

- Minimize sharp edges
 - Beveling/filing
- Narrow metaphyseal flare/condyles
- Cap intramedullary canal
 - Minimize bleeding
- Minimize periosteal stripping
 - Exostosis
Level of Amputation

• Factors
 • Soft tissue
 • Blood flow
 • Functional requirements
Level of Amputation

- Soft tissue
 - Trauma
 - Infection
 - Previous surgeries
Level of Amputation

- Blood flow
- Traumatic
- Vascular disease
Level of Amputation

- **Functional requirements**
 - Young, healthy
 - Preserve length
 - Be aggressive
 - Flaps
 - Skin grafts
 - Sick, low demand
 - Consider prosthetic odds
 - Preserve length for sitting
 - Goal is one surgery
- **Bilateral**
 - Consider atypical amps
Level of Amputation

• Metabolic Demand
 • Proximal = increased demand
 • Exception—Syme

• Must evaluate the patient
 • Diabetic with bilateral BKA won’t do well
Metabolic Demand

• Syme - 15%

• Transtibial
 • Traumatic - 25% average
 • Vascular - 40%
Metabolic Demand

• Transfemoral
 • Traumatic - 68%
 • Vascular - 100%

• Thru-knee amputation
 • Varies based on patient habitus
 • Between transtibial and transfemoral
Metabolic Demand

• Bilateral amputations
 • BKA + BKA - 40%
 • AKA + BKA - 118%
 • AKA + AKA - >200%
Preoperative Evaluation

• Nutrition labs
 • Albumin > 3 g/dL
 • Total lymphocyte > 1500/mm³
• Transcutaneous Oxygen
 • > 30 (45 ideal)
• Toe pressure
 • > 40 (< 20 absolute contraindication)
• ABI
 • > 0.45
Levels of Amputation

- Toe
- Ray resection
- Partial forefoot
- Transmetatarsal
- Symes
- Modified Symes
- BKA
- Through knee
- AKA
- Hip Disarticulation
- Hemipelvectomy
Toe

• Interphalangeal
 • Leave cartilage
 • Trim condyles

• Transect tendons and nerves
 • Do not sew tendons together

• Great toe
 • Leave 1cm
 • Foot balance and function
Ray Resection and Partial Foot

• Includes toe and part of metatarsal
• Preserve 1st MT length
 • Orthosis
 • Foot balance
• Avoid sharp bony prominences
• Multiple lateral rays
Transmetatarsal

• Considered
 • 2 or more medial rays
 • More than one central ray
• Preserve length
• Maintain arch and metatarsal cascade
• Avoid Achilles contracture
 • Achilles lengthening
Transmetatarsal

Ng et al. JAAOS 2010
Negatives for Transmetatarsal

• Foot balance
• Prosthetic fit
• Wound healing
 • 33% primary wound closure
 • 56% may require revision to higher level
Diabetics and Foot Amps

• 75% get revised by 9 months
 • 87% revised to BKA
Symes

• Ankle disarticulation

• Required
 • Viable heel pad

• Modifications
 • Malleoli excision
 • Incision
Symes

Benefits
• Longer limb/less energy
• High level walkers
• End bearing for obese patients
• Ambulate without prosthesis
• Less metabolic demand than midfoot

Negatives
• Wound healing
• Heel pad instability
 • Major issue
• Can’t really walk barefoot
Symes

• Must preserve posterior tibial arterial supply

Ng et al. JAAOS 2010
Other Foot Amps

• Pirogoff
 • Remove all but calcaneus
 • Fuse calcaneus to tibia
 • No need for prosthesis

• Chopart
 • Leaves talus and calcaneus
 • Requires tendon transfers
 • Requires achilles lengthening
 • Poor prosthetic options

• Lisfranc
 • Leaves all tarsal bones
 • Preserve base of 5th
 • Requires tendon transfer
 • Same metabolic demand of BKA
Below Knee Amputation

- Most common
- Longer is better
 - Soft tissue
 - 8-12 cm from ground for most high-impact prosthetics
- Minimum to utilize BKA prosthesis
 - 2.5 cm per 30cm pt height
 - 5cm distal to the tubercle
Below Knee Amputation: Techniques

• Long posterior myocutaneous flap

• Modify skin flaps based upon available skin

• ID neurovascular structures

• Isolate fibula and transect 1.5cm above tibia
Below Knee Amputation: Techniques

• Tibial cut

• Bevel bone cuts

• Ligate vessels and transect nerves

• Myodesis vs. myoplasty
Below Knee Amputation

Staged

• Traumatic or infection
• Guillotine
 • Allows soft tissues and bone to declare
Ertl Procedure

• Tibiofibular synostosis

• Indication
 • Young
 • Proximal tib/fib instability
 • High activity level
Technique

• Fibula cut at same level
• Leave medial periosteal hinge
• Connect to tibia
 • Metal
 • Suture

Ng et al. JAAOS 2010
Case Example

• 45y/o s/p MCC
• Police officer
• Right open femur fx
• Right open tib/fib with vascular insufficiency
• Ex-fix
• Multiple debridements
• Progressive necrosis
Case Example
Case Example
Case Example
Case Example

- Femur infected
 - ABX beads
 - IV abx
 - debridements

- 2 STSG
- Suture removal

- 11mo
After prosthesis

- c/o knee pain and crepitance
Why not Ertl?

• Outcomes
 • Functional scores = no benefit (Ng et al. JAAOS 2010)

• Increasing risk for:
 • Nonunion
 • Painful hardware
 • Infection
BKA at all costs

• Improved energy expenditure

• Soft tissue reconstruction to maintain length and knee function
 • Skin graft or substitute
 • Muscle flap

• More functional prosthesis
Case Example

• 40y/o male s/p BKA due to mangled lower extremity after go-cart accident

• Within 2 weeks of BKA and DPC
 • Infected
 • Necrotic skin
Options

• Revision to AKA

• Reconstruct soft tissue weight-bearing surface
Case Example

- Multiple debridements
- Negative pressure wound therapy (NPWT)
Case Example

- STSG low probability
- Muscle flap required
 - Gracillis rotation flap
Case Example

- Gracillis covering tibia
- STSG over muscle
Through Knee Amputation/Knee Disarticulation

- Prosthetists
 - Bulbous end
 - Knee axis lower to the ground
 - Self image issues
- End bearing residual limb
- Soft tissue coverage
 - Improved with posterior flap technique
Indications

• Trauma
• Infection
• Dysvascular
• Nonambulatory
 • Risk of knee contractures with BKA
• Unlikely to get into prosthesis with AKA
Through Knee Amputation/Knee Disarticulation

Benefits
• End bearing surface
• Sitting comfort
• Longer lever arm
• Balanced thigh muscles
• Prosthetic suspension (femoral condyles)

Negatives
• Knee height
• Soft tissue coverage
• Slower walking speeds (BKA)
• Worse performance on SIP (AKA and BKA)
Technique

- Suture patellar tendon to cruciates

- Patella not distal to femur
 - Not a cap
Through Knee Amputation/Knee Disarticulation

- LEAP study
 - Slowest walking speed
 - Least satisfaction

- 12/18 no gastroc coverage
 - = poor prosthetic tolerance

Mackenzie et al. JBJS 2004
Above Knee Amputation

• Maintain length
 • 12cm proximal to knee is ideal

• Energy expenditure
 • Increased

• Recurrent infected total knee arthroplasty
 • Alternative = knee fusion
Technique

• Fish mouth incision
• Modify to not be end bearing if soft tissues allow
• Myodesis adductors
• Myodesis quad and hamstrings
• No myodesis = poor function and pain
 • Femur moves within muscular sleeve
Above Knee Amputation
Case Example: Maintain length at all cost

- 32 y/o s/p MCC
- Left open tibial shaft fx
- Left open bicondylar tibial plateau fx
- Left open femoral shaft fx
- Left femoral neck fx
- Left clavicle fx
- Left ulna fx
Case Example
Case Example
Case Example

• Rides horses

• No residual pain
Hip Disarticulation

Indications

• Preservation of life
• Co-morbid pt with infection and sepsis
• Necrotizing fasciitis
• Non-ambulators (paraplegics)
• Advanced ischemic disease
• Tumor
Hip Disarticulation

• Problems
 • Wound management
 • Sitting balance
 • No prosthesis?
 • May choose not to wear
 • Use crutches anyway
Technique

- Lateral position
- Medial and lateral skin flaps
- Use muscles to fill dead space
- Wound complications
Hemipelvectomy

• Indications
 • Same as hip disarticulation
 • Tumor more common
 • More common in military recently

• Procedure of last resort
• Poor functional outcome
Technique

• Semi-lateral position

• Large posterior flap

• Keep as much of the hemi pelvis as possible for sitting balance
Complications
Amputation Site Breakdown

Early

• Delayed wound healing
 • Immunocompromised
 • Malnourished
 • Infection
• Marginal necrosis
 • Appropriate surgical technique

• 13% overall (20% BKA)
Amputation Site Breakdown

Late

• Deep infection
 • Usually associated with PVD, DM
 • Trauma=34% rate

• Adherent skin

• Poor prosthetic fit
Infection

- Debridement
- Antibiotics
- Local wound care
- Secondary healing
 - Prolonged wound healing
- Revision amputation
Amputation Site Prominence

- Overgrowth
 - Traumatic
- Bone spur
- Muscle atrophy
- Failed myoplasty/myodesis
- Skin hypertrophy
- Bursitis
- Bulbous/floppy residual limb
 - Poor surgical technique
Amputation Site Prominence

Indications for Revision Amputation

• Poor prosthetic fit

• Limited function

• Pain

• Skin at risk
Neurological Complications

• Neuroma
 • 20-30% amputations

• Phantom limb pain
 • 53-100% of traumatic amputations
Neuroma

- All nerve transections form neuromas

- Painful
 - Positive Tinel’s

- Causes
 - Poor surgical technique
 - Scar formation
 - High pressure area
Neuroma

• Avoid
 • Nerve stump retracts into soft tissue away from scar and prominent areas
 • Can suture to muscle

• Management
 • Prosthetic adjustment
 • Injection
 • Scar massage
 • Surgical resection
 • Targeted muscle reinnervation
Phantom Limb Pain

• May be nonpainful

• Painful
 • Up to 85% in LE
 • ~40-69% in UE
Phantom Limb Pain

• Surgical
 • Dehydrogenated alcohol and marcaine into epineureum

• Non-surgical
 • Neurontin
 • Shown effective
 • Vitamin C?
 • Regional anesthetics perioperatively?
Joint Contracture

• Usually related to short lever arm

• Contracture release and tenolysis may be required if fixed deformity
Heterotopic Ossification/Bone Spur

- Associated with:
 - Severe trauma
 - Excessive manipulation of periosteum
 - Residual bone after osteotomy

- May require surgical resection if problematic
 - Recurrence of HO
Summary

• Several Indications for amputations
 • Consider your patient and all factors
• When possible, optimize your patient
• Preserve length is typically the correct answer
 • BKAs do better functionally than TMAs
 • Symes require less oxygen than TMAs
• Surgical technique is as important to complications as optimization
References

2. Scott et al. Traumatic and Trauma-related Amputations I and II. JBJSAm Dec 2010

3. Ng and Berlet. Evolving Techniques in Foot and ankle Amputations. JAAOS April 2010

4. Lower Extremity Assessment Project (LEAP) – The Best Available Evidence on Limb-Threatening Lower Extremity Trauma. Higgins
Thanks

• Brett Crist for providing cases and slides