The Child with Lower Limb Deficiency

Heikki Uustal, M.D.

Medical Director, Prosthetic/Orthotic Team

JFK - Johnson Rehab Institute

Overview

- Types
- Causes
- Child versus Adult
- Treatment Principles
- Specific levels / Prosthetic needs

Classification

- Frantz-O'Rahilly / ISPO
- Transverse deficiency (no distal segments)
- Longitudinal deficiency (some distal segments)
- Complete/partial absence of bone segments
- Difficult to classify over/undergrowth, duplication and congenital bands

Congenital Limb Deficiency

- Incidence 4.1- 6.3/10,000 births
- Congenital: Acquired 60:40
- Upper: Lower 2:1
- 30% multiple limbs
- Male: Female 1.8:1
- Seldom have associated diseases
- Usually normal intelligence

Genetic Considerations

- Most transverse defects have no genetic risks
- Tibial defects have the highest risk (30%)
- Renal defects associated with lower extremity deficiency
- Scoliosis (18%) and cardiac defects linked with upper extremity deficiency

Congenital

- Radial deficiency (most common)
- Fibular deficiency
- Tibial deficiency
- Femur deficiency
- Multi-limb deficiency (least common)

Common Questions

- Why did this happen?
- When did this happen?
- Can it happen again ?
- Whose fault?
- What can be done?

Why did this happen?

- Mostly sporadic
- Drugs (Thalidomide)
- Amniotic Bands
- Genetic
- Vascular, maternal diabetes
- Infections (CMV, Rubella)

When did this happen?

Limb buds develop at 4-8 weeks, therefore insults at this time cause failure of formation. Many women are unaware of pregnancy at this time.

Can it happen again?

● 1-3% chance

(Slightly higher than normal)

Some genetic associations

(Tibial deficiency, Ulnar-femoral syndrome)

Associated Anomalies

- VATER (VACTERL)=multi-organ
- TAR=thrombocytopenia
- Holt-Oram=cardiac
- Fanconi=pancytopenia

What can be done?

- Reassurance- Reinforce "Normalcy"
- Educate
- Team approach
- Introduce other kids/families
- Refer, if not comfortable

Treatment Principles

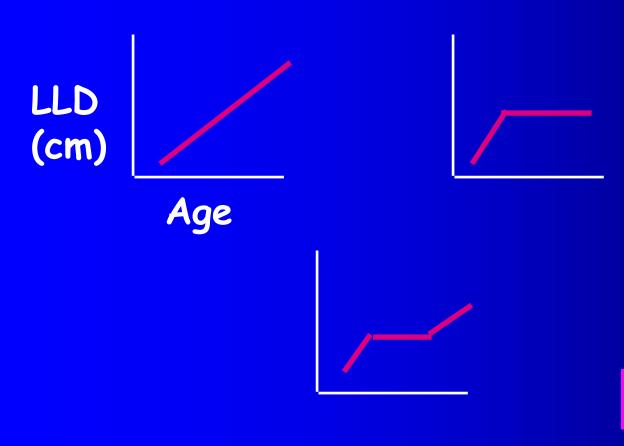
- Different, NOT disabled
- Build self-esteem
- Discuss all Rx options
- Individualize goals
- Timely Intervention

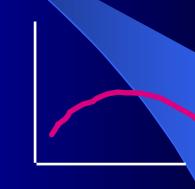
Child # Adult Amputee

- Congenital > Acquired
- More adaptable
- Changing development
- Changing size
- Different requirements

Child = Adult Amputee

- Changing prosthetic needs
- Skin more tolerant
- Lack of systemic illness
- Less careful with maintenance
- Stump "overgrowth"


Decision Making


- Severity of deficiency
- **Estimate limb length at maturity**
- Amputation, lengthening, bracing?
- Timing of intervention (age of child)
- Psycho-social assessment
- Available expertise and finances

Limb Length Discrepancy

- True / Apparent
- Congenital / Acquired
- Pattern of inhibition
- Bone segments involved
- Associated problems

Patterns of LLD

Shapiro JBJS 1982

LLD at Maturity

- Birth
- •1 yr.
- 3 yr.(Girl)
- 4 yr. (Boy)

LLD x 4

LLD x 3

LLD x 2

LLD x 2

Compensatory Mechanisms LLD

- Equinus foot (lengthens limb)
- Knee flexion, contra-lateral (shortens)
- Pelvic tilt

LLD: Consequences

- Limp: increased energy, cadence
- Excessive wear opp. hip: ? DJD
- Scoliosis: controversial

Management

LLD at Maturity Rx

< 2 cm

2-5 cm

5-20 cm

> 20 cm

? Shoe lift

Epiphyseodesis or Fem. shortening

Lengthening

Prosthesis

Syme's at 1 year

Syme's at 12 years

Amputation

- "Conversion" amputation
- Site bone versus joint
- Only 10% of UE need surgery
- Anticipate LLD at maturity
- Account for prosthetic needs

Surgical intervention Goals

- Maintain muscle dev. of limb
- Prevent progressive deformity
- Retain growth plates
- Preserve proximal joints
- Stabilize proximal joints

Stump Overgrowth

- Through bone amputations
- Appositional bone growth
- Humerus > Tib/fib > Femur
- Acquired > Congenital
- Prevention- Biologic "Capping"

Heterotopic Bone Formation

Prosthetic Fitting Advantages

- More functional?
- Less psychological stress?

Prosthetic Fitting Disadvantages

- Cover sensate areas
- Wear and tear (skin, joints)
- Nuisance factor
- "Loss" of body part

When to fit Prosthesis?

- Match with child's development
- Upper passive sit ~ 4-6 mos
- Activate terminal device ~ 9-18 mos
- Activate elbow ~ 24-36 mos
- Lower non-articulated ~ 6-12 mos
- Lower articulated ~ 24-36 mos

Fitting a Prosthesis Goals

- Optimum function
- Comfort
- Ease of use
- Longevity
- Cosmesis

Partial Foot Deficiency

Syme's Amputation Prosthesis

Tibia/Fibula considerations

Fibular Deficiency

- **Femoral shortening in ~50%**
- 25% are bilateral
- Knee / Ankle / Foot anomalies
- Anteromedial tibial bow
- Equino-valgus foot

Fibular Deficiency Limb lengthening if:

- Stable foot with >3 rays
- Plantigrade foot
- Stable / mobile ankle
- Predicted LLD <20 cm
- Multidisciplinary team

Fibular Deficiency Conversion Amputation to Syme's

- Unstable foot with <3 rays</p>
- Unstable / stiff ankle
- Predicted LLD >20 cm
- Multidisciplinary team

Tibial Deficiency

- Jones classification (based on tibial length remaining)
- Can be genetic
- Knee flexed and unstable, ankle varus deformity
- Rx based on severity

Tibial Deficiency Options

- Absent tibia = knee disarticulation
- Fibular centralization
- Proximal third = tibia-fibula fusion
- More than a third = syme's
- Lengthening / reconstruction if foot and ankle are stable

Bilateral Tibial Deficiency

After Bilateral Knee Dis-articulations

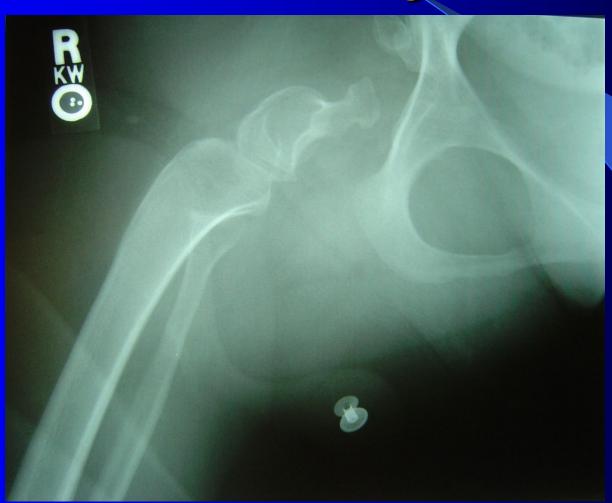
Bilateral Congenital Limb Deficiency (video)

Congenital Femur Deficiency

- Femur /Acetabulum dysplastic
- Hip Flex / Abd / Ext rot.
- Hypoplastic lateral condyle
- Knee A-P laxity
- Fibular hypoplasia (~50%)

Longitudinal Femoral Deficiency Prosthesis

PFFD



PFFD Prosthesis

Proximal Focal Femoral Deficiency

Congenital Hip Disarticulation

PFFD and Hip Disarticulation

Casting for new prostheses

Old PFFD Prosthesis

Congenital Femur Deficiency Prosthetic Fitting

- Prosthetic Fitting > 50% deficiency
- Knee fusion + ankle disartic = knee disartic
- With VanNess Rotationplasty = Modified BKA
- Consider limb lengthening < 50% deficiency</p>

Congenital Femur Deficiency Rotationplasty

- Need mobile ankle (90 degrees PF)
- Gastroc-soleus = "knee extensor"
- Ankle at level of opposite knee
- Muscle strength 4/5 necessary
- Fitted as modified BKA on foot

VanNess Rotationplasty

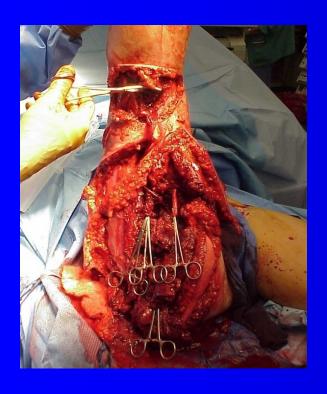
VanNess Rotationplasty Prosthesis

Walk with Rotationplasty Prosthesis (video)

Acquired Amputation

- Trauma (most common)
- Malignancy
- Infection- meningococcus
- Vascular
- 60% in lower extremity

BKA due to vascular injury



Peds Trans-tib prosthesis with thigh corset

Traumatic amputation (start to finish, or just the beginning?)

Lumpy, Bumpy Limb

Prosthetic Replacement

- Replace prosthesis once a year from age 1 to 16 (or when growth stops).
- Occasionally the foot can be used for 2 years
- Try to plan for growth into prosthesis (pylon and socket)
- Frequent modifications are expected

Conjoined twin separated at three months

(hemi-pelvectomy)

Multi-Limb Deficiency

- Function with/without prosthesis
- Keep limbs / spine mobile
- Preserve feet and hands
- Adaptations for ADL's
- Mobility versus "walking"

Multiple-Limb Amputee

(four limb deficiency)

Kids are different, not disabled

Bilateral Transhumeral and Trans-femoral amputations. Where do you start?

Bilateral Trans-femoral Amputee (video)

Thank You