Surgical Considerations in Lower Extremity Amputation

Tina Dreger, MD
Orthopaedic Trauma Fellow
University of Missouri
Disclosures

– None

– Original presentation by Brett Crist, MD
Objectives

• Understand the indications for lower extremity amputation
• Understand the principles and goals of lower extremity amputation
• Review specific levels of amputation and important considerations for each
• Review special considerations involving lower extremity reconstruction
Lower Extremity:
Purpose

• Ambulation/locomotion
Indications for Amputations

• Trauma
 – Acute
 – Chronic

• Medical Co-morbidities
Amputation Due to Trauma

- Trauma
 - 20-40 y/o males
 - 16% of amputations
 - 45% of amputees
Indications for Amputation

- LEAP
 - 569 patients followed prospectively
 - Amp vs. limb salvage
 - 2 and 7 year data
 - Hospitalization
 - White collar
 - =?

Bosse et al. NEJM 2002; JBJS 2005
Indications for Amputation

- Lack of plantar sensation
 - Not equal automatic amputation
 - >50% of salvages with initial lack of plantar sensation recovered by 2 years

Bosse et al. JBJSAm 2005
Indications for Amputation

• Military
 – Pushing the envelope
 – Extremity War Injuries
 – Symposia
Amputations Among Military

- Increased number of 3 and 4 extremity amputees
- IED’s = infection
- Soldiers with tourniquets
- Significant psychological and societal implications
Indications for Amputations

• Infection
 – 2º to diabetes

• Peripheral Vascular Disease
 – 2º to diabetes (71%)
 – 80% of lower extremity amputees
Indications for Amputations

• Neurological disorders
 – Peripheral neuropathy 2⁰ to diabetes
 – Lack of protective sensation
• Burn
• Congenital deformities
• Malignant tumors
 – Clear margin
Successful Amputation

• Removal of dysfunctional/devitalized tissue
 – easy

• Reconstruction of a durable residual limb
 – challenging
Goals of Amputation Surgery

- **Preservation of Length**
 - Prevention of adjacent joint contractures

- **Preservation of function**
 - Minimize energy expenditure

- **Early return to function**
 - Early prosthetic fitting when possible

- **Painless residual limb**
 - Prevention of symptomatic neuromas
 - Minimize phantom limb pain

- **Preservation of Life**
Energy Expenditure

• Normal energy expenditure
 – Walking
 – O2 consumption

• Level of amputation
 – Higher = more energy

<table>
<thead>
<tr>
<th>Amputation Level</th>
<th>Energy Above Baseline (%)</th>
<th>Speed (m/min)</th>
<th>O₂ Cost (mL/kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long transtibial</td>
<td>10</td>
<td>70</td>
<td>0.17</td>
</tr>
<tr>
<td>Average transtibial</td>
<td>25</td>
<td>60</td>
<td>0.20</td>
</tr>
<tr>
<td>Short transtibial</td>
<td>40</td>
<td>50</td>
<td>0.20</td>
</tr>
<tr>
<td>Bilateral transtibial</td>
<td>41</td>
<td>50</td>
<td>0.20</td>
</tr>
<tr>
<td>Transfemoral</td>
<td>65</td>
<td>40</td>
<td>0.28</td>
</tr>
<tr>
<td>Wheelchair</td>
<td>0-8</td>
<td>70</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Gottschalk, Frank; Rehabilitation: Gait, Amputations, Prostheses, Orthoses, and Neurologic Injury, Chpt. 10.
General Amputation Principles

- Skin
- Muscle
- Nerves
- Blood Vessels
- Bone
Skin

• Painless, pliable, nonadherent scar

• Scar placement and prosthetic wear
 – Viable level

• Coverage:
 – Flap coverage
 – Skin graft
Muscle

• Myofascial closure
 – Provides minimal muscle stabilization
• Myoplasty
 – Balances opposing muscle groups
• Myodesis
 – Attach muscle to bone
• Tenodesis
 – Attach tendon to bone
Nerves

• Avoiding painful neuromas
 1. Separate nerve from vessels
 2. Traction nerve and sharply transect
 -Retracts to safety
 3. Nerve preparation
 -Injection of alcohol
Blood Vessels

• Suture ligate major vessels

• Full-thickness skin flaps
 – Minimize wound necrosis

• Hemostasis prior to closure
 – Drains
Bone

• Minimize sharp edges
 – Beveling/filing

• Narrow metaphyseal flare/condyles

• Cap intramedullary canal
 – Minimize bleeding

• Minimize periosteal stripping
 – Exostosis
Levels of Amputation
Levels of Amputation

- Toe
- Ray resection
- Partial forefoot
- Transmetatarsal
- Symes
- Modified Symes
- BKA
- Through knee
- AKA
- Hip Disarticulation
- Hemipelvectomy
• Interphalangeal
 – Leave cartilage
 – Trim condyles

• Transect tendons and nerves
 – Do not sew tendons together

• Great toe
 – Leave 1cm
 – Foot balance and function
Ray Resection and Partial Foot

- Includes toe and part of metatarsal
- Preserve 1st MT length
 - Orthosis
 - Foot balance
- Avoid sharp bony prominences
- Multiple lateral rays
Transmetatarsal

• Considered
 – 2 or more medial rays
 – More than one central ray
• Preserve length
• Maintain arch and metatarsal cascade
• Avoid Achilles contracture
 – Achilles lengthening
Transmetatarsal

Ng et al. JAAOS 2010
Negatives for Transmetatarsal

– Foot balance
– Prosthetic fit
– Wound healing
 • 33% primary wound closure
 • 56% may require revision to higher level
Symes

• Ankle disarticulation

• Required
 – Viable heel pad

• Modifications
 – Malleoli excision
 – Incision
Symes

Benefits
- Longer limb/less energy
- High level walkers
- End bearing for obese patients
- Ambulate without prosthesis

Negatives
- Wound healing
- Compliance
- Heel pad instability
Symes

- Must preserve posterior tibial arterial supply

Ng et al. JAAOS 2010
Below Knee Amputation

- Most common

- Longer is better
 - Always?
 - Soft tissue

- Minimum to utilize BKA prosthesis
 - 2.5 cm per 30cm pt height
 - 5cm distal to the tubercle
Below Knee Amputation: Techniques

• Long posterior myocutaneous flap

• Modify skin flaps based upon available skin

• ID neurovascular structures

• Isolate fibula and transect 1.5cm above tibia
• Tibial cut

• Bevel bone cuts

• Ligate vessels and transect nerves

• Myodesis vs. myoplasty
Below Knee Amputation

Staged

– Traumatic or infection
– Guillotine
 • Allows soft tissues and bone to declare
Ertl Procedure

• Tibiofibular synostosis

• Indication
 – Young
 – Proximal tib/fib instability
 – High activity level

• Outcomes
 – Functional scores = no benefit (Ng et al. JAAOS 2010)
Technique

- Fibula cut at same level
- Leave medial periosteal hinge
- Connect to tibia
 - Metal
 - Suture

Ng et al. JAAOS 2010
Case Example

- 45y/o s/p MCC
- Police officer
- Right open femur fx
- Right open tib/fib with vascular insufficiency
- Ex-fix
- Multiple debridements
- Progressive necrosis
Case Example
Case Example
Case Example

• Femur infected
 – ABX beads
 – IV abx
 – debridements

• 2 STSG
• Suture removal

• 11mo
After prosthesis

- c/o knee pain and crepitance
BKA at all costs

• Improved energy expenditure

• Soft tissue reconstruction to maintain length and knee function
 – Skin graft or substitute
 – Muscle flap

• More functional prosthesis
Case Example

- 40y/o male s/p BKA due to mangled lower extremity after go-cart accident

- Within 2 weeks of BKA and DPC
 - Infected
 - Necrotic skin
Options

• Revision to AKA

• Reconstruct soft tissue weight-bearing surface
Case Example

- Multiple debridements
- Negative pressure wound therapy (NPWT)
Case Example

- STSG low probability

- Muscle flap required
 - Gracilis rotation flap
Case Example

- Gracillis covering tibia

- STSG over muscle
Through Knee Amputation/Knee Disarticulation

• Prosthetists
 – Thumbs up or down

• End bearing residual limb

• Soft tissue coverage
 – Improved with posterior flap technique
Indications

- Trauma
- Infection
- Dysvascular
- Nonambulatory
 - *Risk of knee contractures with BKA
Through Knee Amputation/Knee Disarticulation

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>– End bearing surface</td>
<td>– Knee height</td>
</tr>
<tr>
<td>– Sitting comfort</td>
<td>– Soft tissue coverage</td>
</tr>
<tr>
<td>– Longer lever arm</td>
<td></td>
</tr>
<tr>
<td>– Balanced thigh muscles</td>
<td></td>
</tr>
<tr>
<td>– Prosthetic suspension (femoral condyles)</td>
<td></td>
</tr>
</tbody>
</table>
Technique

- Suture patellar tendon to cruciates
- Patella not distal to femur
Through Knee Amputation/Knee Disarticulation

• LEAP study
 – Slowest walking speed
 – Least satisfaction

– 12/18 no gastroc coverage->poor prosthetic tolerance

Mackenzie et al. JBJS 2004
Above Knee Amputation

• Maintain length

• Energy expenditure

• Recurrent infected total knee arthroplasty
 — Alternative to knee fusion
Technique

• Fish mouth incision
 - Modify to prevent weight bearing on incision

• Myodese adductors

• Myodese quad and hamstrings

• No myodesis = poor function and pain
 – Femur moves within muscular sleeve
Above Knee Amputation
Case Example: Maintain length at all cost

- 32 y/o s/p MCC
- Left open tibial shaft fx
- Left open bicondylar tibial plateau fx
- Left open femoral shaft fx
- Left femoral neck fx
- Left clavicle fx
- Left ulna fx
Case Example
Case Example
Case Example

- Rides horses
- No residual pain
Hip Disarticulation

Indications

– Preservation of life
– Co-morbid pt with infection and sepsis
– Necrotizing fasciitis
– Non-ambulators (paraplegics)
– Advanced ischemic disease
– Tumor
Hip Disarticulation

• Problems
 – Wound management
 – Sitting balance
 – No prosthesis?
 • May choose not to wear
 • Use crutches anyway
Technique

- Lateral position
- Medial and lateral skin flaps
- Use muscles to fill dead space
- Wound complications
Hemipelvectomy

• Indications
 – Same as hip disarticulation
 – Tumor more common
 – More common in military recently

• Procedure of last resort

• Poor functional outcome
Technique

• Semi-lateral position

• Large posterior flap

• Keep as much of the hemi pelvis as possible for sitting balance
Complications
Amputation Site Breakdown

Early

• Delayed wound healing
 – Immunocompromised
 – Malnourished
 – Infection

• Marginal necrosis
 – Appropriate surgical technique
Amputation Site Breakdown

Late

- Deep infection
 - Usually associated with PVD/DM/amputation for infected hardware

- Adherent skin

- Poor prosthetic fit
Infection

• Debridement
• Antibiotics
• Local wound care
• Secondary healing
 – Prolonged wound healing
• Revision amputation
Amputation Site Prominence

• Overgrowth
• Bone spur
• Muscle atrophy
• Failed myoplasty/myodesesis
• Skin hypertrophy
• Bursitis
• Bulbous/floppy residual limb
 – Poor surgical technique
Indications for Revision Amputation

• Tissue prominence
 – Poor prosthetic fit
 – Limited function
 – Pain
 – Skin at risk
Heterotopic Ossification/Bone Spur

• Associated with:
 – Severe trauma
 – Excessive manipulation of periosteum
 – Residual bone after osteotomy

• May require surgical resection if problematic
 – Recurrence of HO
Indications for Revision Amputation

• Neurologic Complications
 – Neuroma
 – Phantom limb sensation
Neuroma

• All nerve transections form neuromas

• Painful
 – Positive Tinel’s

• Causes
 – Poor surgical technique
 – High pressure area
 – Crush injury
Phantom Limb Pain

• May be nonpainful

• Painful
 — Up to 85% in LE
 — ~40-69% in UE
Phantom Limb Pain

• Surgical
 – Dehydrogenated alcohol and marcaine into epineureum

• Non-surgical
 – Neurontin
 • Shown effective
 – Vitamin C?
 – Regional anesthetics perioperatively?
Joint Contracture

• Usually related to short lever arm

• Contracture release and tenolysis may be required if fixed deformity
Summary

• Lower extremity amputations are much more common than upper extremity
• Restoring function is important
 – Reconstruction
 – Prosthesis
• Preserve length and joint motion
• Avoid complications
• Patient counseling/support
Questions?
Thank You

Email:
dregert@health.missouri.edu
References

2. Scott et al. Traumatic and Trauma-related Amputations I and II. JBJSAm Dec 2010

3. Ng and Berlet. Evolving Techniques in Foot and ankle Amputations. JAAOS April 2010