Profile
My studies at MU examined the basis for adaptive variation among bacteria with very small genomes. Lacking sophisticated sensory systems for adaptive gene regulation, these organisms utilize a system of stochastic, reversible and localized mutations that lead to random combinatorial expression patterns of surface architecture. Arrays of surface proteins encoded by these “contingency genes” result in complex and highly variable populations whose adaptive behavior relies on the generation of diversity and survival of variants, rather than programmed environmental sensory systems.
In recent years I have been with the Synthetic Biology team at the J. Craig Venter Institute http://www.jcvi.org/,using one of these small-genome organisms as a model to design, synthesize and further reduce its gene content, thereby creating the smallest genome known to support a self-replicating cell. Understanding and modeling this synthetic cell should reveal first principles of cellular life.
Academic Information
Research Interests
- Synthetic biology
- Genomics
- Minimal cellular life
- Adaptive variation
Areas of Expertise
- Bacterial genetics and pathogenesis
Related Links
Education & Training
Post-Graduate School
1973, PhD, University of Southern California
Publications
- Sandberg TE, Wise KS, Dalldorf C, Szubin R, Feist AM, Glass JI, Palsson BO.
Adaptive evolution of a minimal organism with a synthetic genome.
iScience. 2023 Jul 28;26(9):107500. doi: 10.1016/j.isci.2023.107500. PMID: 37636038; PMCID: PMC10448532. -
Moger-Reischer, R.Z., Glass, J.I., Wise, K.S. et al.
Evolution of a minimal cell.
Nature(2023). https://doi.org/10.1038/s41586-023-06288-x -
Haas D, Thamm AM, Sun J, Huang L, Sun L, Beaudoin GAW, Wise KS, Lerma-Ortiz C, Bruner SD, Breuer M, Luthey-Schulten Z, Lin J, Wilson MA, Brown G, Yakunin AF, Kurilyak I, Folz J, Fiehn O, Glass JI, Hanson AD, Henry CS, de Crécy-Lagard V.
Metabolite Damage and Damage Control in a Minimal Genome.
mBio. 2022 Jul 11:e0163022. doi: 10.1128/mbio.01630-22. Epub ahead of print. PMID: 35862786. -
Thornburg ZR, Bianchi DM, Brier TA, Gilbert BR, Earnest TM, Melo MCR, Safronova N, Sáenz JP, Cook AT, Wise KS, Hutchison CA 3rd, Smith HO, Glass JI, Luthey-Schulten Z.
Fundamental behaviors emerge from simulations of a living minimal cell.
Cell. 2022 Jan 20;185(2):345-360.e28. doi: 10.1016/j.cell.2021.12.025. PMID: 35063075. -
Pelletier JF, Sun L, Wise KS, Assad-Garcia N, Karas BJ, Deerinck TJ, Ellisman MH, Mershin A, Gershenfeld N, Chuang RY, Glass JI, Strychalski EA.
Genetic requirements for cell division in a genomically minimal cell.
Cell. 2021 Apr 29;184(9):2430-2440.e16. doi: 10.1016/j.cell.2021.03.008. Epub 2021 Mar 29. PMID: 33784496. -
Breuer M, Earnest TM, Merryman C, Wise KS, Sun L, Lynott MR, Hutchison CA, Smith HO, Lapek JD, Gonzalez DJ, de Crécy-Lagard V, Haas D, Hanson AD, Labhsetwar P, Glass JI, Luthey-Schulten Z.
Essential metabolism for a minimal cell.
eLife 2019; 8:36842 DOI: 10.7554/eLife.36842 -
Mariscal AM, Kakizawa S, Hsu JY, Tanaka K, González-González L, Broto A, Querol E, Lluch-Senar M, Piñero-Lambea C, Sun L, Weyman PD, Wise KS, Merryman C, Tse G, Moore AJ, Hutchison CA 3rd, Smith HO, Tomita M, Venter JC, Glass JI, Piñol J, Suzuki Y.
Tuning Gene Activity by Inducible and Targeted Regulation of Gene Expression in Minimal Bacterial Cells.
ACS Synth Biol. 2018 Jun 15;7(6):1538-1552. doi: 10.1021/acssynbio.8b00028. Epub 2018 May 22. PMID: 29786424. -
Glass JI, Merryman C, Wise KS, Hutchison CA 3rd, Smith HO.
Minimal Cells-Real and Imagined.
Cold Spring Harb Perspect Biol. 2017 Dec 1;9(12). pii: a023861. doi: 10.1101/cshperspect.a023861. Review. PMID: 28348033. -
Hutchison CA 3rd, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi ZQ, Richter RA, Strychalski EA, Sun L, Suzuki Y, Tsvetanova B, Wise KS, Smith HO, Glass JI, Merryman C, Gibson DG, Venter JC.
Design and synthesis of a minimal bacterial genome.
Science. 2016 Mar 25;351(6280):aad6253. doi: 10.1126/science.aad6253. Erratum in: ACS Chem Biol. 2016 May 20;11(5):1463. MID: 27013737. -
Suzuki Y, Assad-Garcia N, Kostylev M, Noskov VN, Wise KS, Karas BJ, Stam J, Montague MG, Hanly TJ, Enriquez NJ, Ramon A, Goldgof GM, Richter RA, Vashee S, Chuang RY, Winzeler EA, Hutchison CA 3rd, Gibson DG, Smith HO, Glass JI, Venter JC.
Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling.
Genome Res. 2015 Mar;25(3):435-44. doi: 10.1101/gr.182477.114. Epub 2015 Feb 5. PMID: 25654978. -
Karas BJ, Wise KS, Sun L, Venter JC, Glass JI, Hutchison CA 3rd, Smith HO, Suzuki Y.
Rescue of mutant fitness defects using in vitro reconstituted designer transposons in Mycoplasma mycoides.
Front Microbiol. 2014 Jul 23;5:369. doi: 10.3389/fmicb.2014.00369. eCollection 2014. PMID: 25101070. -
Wise KS, Calcutt MJ, Foecking MF, Madupu R, DeBoy RT, Röske K, Hvinden ML, Martin TR, Durkin AS, Glass JI, Methé BA.
Complete genome sequences of Mycoplasma leachii strain PG50T and the pathogenic Mycoplasma mycoides subsp. mycoides small colony biotype strain Gladysdale.
J Bacteriol. 2012 Aug;194(16):4448-9. doi: 10.1128/JB.00761-12. PMID: 22843585. -
Wise KS,Foecking MF, Röske K, Lee YJ, Lee YM, Madan A, Calcutt MJ.
Distinctive repertoire of contingency genes conferring mutation- based phase variation and combinatorial expression of surface lipoproteins in Mycoplasma capricolum subsp. capricolum of the Mycoplasma mycoides phylogenetic cluster.
J Bacteriol. 2006 Jul;188(13):4926-41. Erratum in: J Bacteriol. 2006 Sep;188(18):6716-7. PMID: 16788201. -
Röske K, Calcutt MJ, Wise KS.
The Mycoplasma fermentans prophage phiMFV1: genome organization, mobility and variable expression of an encoded surface protein.
Mol Microbiol. 2004 Jun;52(6):1703-20. PMID: 15186419. -
Calcutt MJ, Lewis MS, Wise KS.
Molecular genetic analysis of ICEF, an integrative conjugal element that is present as a repetitive sequence in the chromosome of Mycoplasma fermentans PG18.
J Bacteriol. 2002 Dec;184(24):6929-41. PMID: 12446643. -
Zhang Q, Wise KS.
Localized reversible frameshift mutation in an adhesin gene confers a phase-variable adherence phenotype in mycoplasma.
Mol Microbiol. 1997 Sep;25(5):859-69. PMID: 9364912. -
Theiss P, Wise KS.
Localized frameshift mutation generates selective, high-frequency phase variation of a surface lipoprotein encoded by a mycoplasma ABC transporter operon.
J Bacteriol. 1997 Jun; 179(12):4013-22. PMID: 9190819. -
Citti C, Kim MF, Wise KS.
Elongated versions of Vlp surface lipoproteins protect Mycoplasma hyorhinis escape variants from growth-inhibiting host antibodies.
Infect Immun. 1997 May;65(5):1773-85. PMID: 9125561. -
Wise KS.
Adaptive surface variation in mycoplasmas.
Trends Microbiol. 1993 May;1(2):59-63. Review. PMID: 8044463. -
Yogev D, Rosengarten R, Watson-McKown R, Wise KS.
Molecular basis of Mycoplasma surface antigenic variation: a novel set of divergent genes undergo spontaneous mutation of periodic coding regions and 5' regulatory sequences.
EMBO J. 1991 Dec;10(13):4069-79. PMID: 1721868. -
Rosengarten R, Wise KS.
Phenotypic switching in mycoplasmas: phase variation of diverse surface lipoproteins.
Science. 1990 Jan 19;247(4940):315-8. PMID: 1688663.